FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis

Authorized Users Only
2013
Authors
Filipić, Brankica
Golić, Nataša
Jovčić, Branko
Tolinacki, Maja
Bay, Denice C.
Turner, Raymond J.
Antić-Stanković, Jelena
Kojić, Milan
Topisirović, Ljubiša
Article (Published version)
Metadata
Show full item record
Abstract
Functional characterization of the multidrug resistance CmbT transporter was performed in Lactococcus lactis. The cmbT gene is predicted to encode an efflux protein homologous to the multidrug resistance major facilitator superfamily. The cmbT gene (1377 bp) was cloned and overexpressed in L. lactis NZ9000. Results from cell growth studies revealed that the CmbT protein has an effect on host cell resistance to lincomycin, cholate, sulbactam, ethidium bromide, Hoechst 33342, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametoxazole. Moreover, in vivo transport assays showed that overexpressed CmbT-mediated extrusion of ethidium bromide and Hoechst 33342 was higher than in the control L. lactis NZ9000 strain. CmbT-mediated extrusion of Hoechst 33342 was inhibited by the ionophores nigericin and valinomycin known to dissipate proton motive force. This indicates that CmbT-mediated extrusion is based on a drug-proton antiport mechanism. Taking together results obtained in this s...tudy, it can be concluded that CmbT is a novel major facilitator multidrug resistance transporter candidate in L. lactis, with a possible signaling role in sulfur metabolism.

Keywords:
CmbT transporter / Multidrug resistance / Major facilitator superfamily / Sulfur metabolism / Lactococcus lactis
Source:
Research in Social & Administrative Pharmacy, 2013, 164, 1, 46-54
Publisher:
  • Elsevier Science BV, Amsterdam
Funding / projects:
  • Genes and molecular mechanisms promoting probiotic activity of lactic acid bacteria from Western Balkan (RS-173019)

DOI: 10.1016/j.resmic.2012.09.003

ISSN: 0923-2508

PubMed: 22985829

WoS: 000313542400008

Scopus: 2-s2.0-84871720792
[ Google Scholar ]
12
6
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/1944
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Filipić, Brankica
AU  - Golić, Nataša
AU  - Jovčić, Branko
AU  - Tolinacki, Maja
AU  - Bay, Denice C.
AU  - Turner, Raymond J.
AU  - Antić-Stanković, Jelena
AU  - Kojić, Milan
AU  - Topisirović, Ljubiša
PY  - 2013
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/1944
AB  - Functional characterization of the multidrug resistance CmbT transporter was performed in Lactococcus lactis. The cmbT gene is predicted to encode an efflux protein homologous to the multidrug resistance major facilitator superfamily. The cmbT gene (1377 bp) was cloned and overexpressed in L. lactis NZ9000. Results from cell growth studies revealed that the CmbT protein has an effect on host cell resistance to lincomycin, cholate, sulbactam, ethidium bromide, Hoechst 33342, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametoxazole. Moreover, in vivo transport assays showed that overexpressed CmbT-mediated extrusion of ethidium bromide and Hoechst 33342 was higher than in the control L. lactis NZ9000 strain. CmbT-mediated extrusion of Hoechst 33342 was inhibited by the ionophores nigericin and valinomycin known to dissipate proton motive force. This indicates that CmbT-mediated extrusion is based on a drug-proton antiport mechanism. Taking together results obtained in this study, it can be concluded that CmbT is a novel major facilitator multidrug resistance transporter candidate in L. lactis, with a possible signaling role in sulfur metabolism.
PB  - Elsevier Science BV, Amsterdam
T2  - Research in Social & Administrative Pharmacy
T1  - The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis
VL  - 164
IS  - 1
SP  - 46
EP  - 54
DO  - 10.1016/j.resmic.2012.09.003
ER  - 
@article{
author = "Filipić, Brankica and Golić, Nataša and Jovčić, Branko and Tolinacki, Maja and Bay, Denice C. and Turner, Raymond J. and Antić-Stanković, Jelena and Kojić, Milan and Topisirović, Ljubiša",
year = "2013",
abstract = "Functional characterization of the multidrug resistance CmbT transporter was performed in Lactococcus lactis. The cmbT gene is predicted to encode an efflux protein homologous to the multidrug resistance major facilitator superfamily. The cmbT gene (1377 bp) was cloned and overexpressed in L. lactis NZ9000. Results from cell growth studies revealed that the CmbT protein has an effect on host cell resistance to lincomycin, cholate, sulbactam, ethidium bromide, Hoechst 33342, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametoxazole. Moreover, in vivo transport assays showed that overexpressed CmbT-mediated extrusion of ethidium bromide and Hoechst 33342 was higher than in the control L. lactis NZ9000 strain. CmbT-mediated extrusion of Hoechst 33342 was inhibited by the ionophores nigericin and valinomycin known to dissipate proton motive force. This indicates that CmbT-mediated extrusion is based on a drug-proton antiport mechanism. Taking together results obtained in this study, it can be concluded that CmbT is a novel major facilitator multidrug resistance transporter candidate in L. lactis, with a possible signaling role in sulfur metabolism.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "Research in Social & Administrative Pharmacy",
title = "The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis",
volume = "164",
number = "1",
pages = "46-54",
doi = "10.1016/j.resmic.2012.09.003"
}
Filipić, B., Golić, N., Jovčić, B., Tolinacki, M., Bay, D. C., Turner, R. J., Antić-Stanković, J., Kojić, M.,& Topisirović, L.. (2013). The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis. in Research in Social & Administrative Pharmacy
Elsevier Science BV, Amsterdam., 164(1), 46-54.
https://doi.org/10.1016/j.resmic.2012.09.003
Filipić B, Golić N, Jovčić B, Tolinacki M, Bay DC, Turner RJ, Antić-Stanković J, Kojić M, Topisirović L. The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis. in Research in Social & Administrative Pharmacy. 2013;164(1):46-54.
doi:10.1016/j.resmic.2012.09.003 .
Filipić, Brankica, Golić, Nataša, Jovčić, Branko, Tolinacki, Maja, Bay, Denice C., Turner, Raymond J., Antić-Stanković, Jelena, Kojić, Milan, Topisirović, Ljubiša, "The cmbT gene encodes a novel major facilitator multidrug resistance transporter in Lactococcus lactis" in Research in Social & Administrative Pharmacy, 164, no. 1 (2013):46-54,
https://doi.org/10.1016/j.resmic.2012.09.003 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB