rcub.pharmacy.logo
rcub.pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   IBISS RADaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   IBISS RADaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase

rcub.bitstream.locked
2013
Authors
Narancić, Tanja
Kadivojević, Jelena
Jovanović, Predrag
Francuski, Đorđe
Bigović, Miljan
Maslak, Veselin
Savić, Vladimir
Vasiljević, Branka
O'Connor, Kevin
Nikodinović-Runić, Jasmina
Article (Published version)
Metadata
Show full item record
Abstract
A novel whole cell system based on recombinantly expressed 4-oxalocrotonate tautomerase (4-OT) was developed and shown to be an effective biocatalyst for the asymmetric Michael addition of acetaldehyde to beta-nitrostyrenes. Optimal ratio of substrates (2 mM beta-nitrostyrenes and 20 mM acetaldehyde) and biocatalyst of 5 g of cell dry weight of biocatalyst per liter was determined. Through further bioprocess improvement by sequential addition of substrate 10 mM nitrostyrene biotransformation was achieved within 150 min. Excellent enantioselectivity (>99% ee) and product yields of up to 60% were obtained with beta-nitrostyrene substrate. The biotransformation product, 4-nitro-3-phenyl-butanal, was isolated from aqueous media and further transformed into the corresponding amino alcohol. The biocatalyst exhibited lower reaction rates with p-Cl-, o-Cl- and p-F-beta-nitrostyrenes with product yields of 38%, 51%, 31% and ee values of 84%, 88% and 94% respectively. The importance of the termi...nal,proline of 4-UT was confirmed by two proline enriched variants and homology modeling.

Keywords:
Biocatalyst / Michael addition / Nitrostyrene / 4-Oxalocrotonate tautomerase / Whole cell
Source:
Bioresource Technology, 2013, 142, 462-468
Publisher:
  • Elsevier Sci Ltd, Oxford
Funding / projects:
  • Microbial diversity study and characterization of beneficial environmental microorganisms (RS-173048)

DOI: 10.1016/j.biortech.2013.05.074

ISSN: 0960-8524

PubMed: 23759430

WoS: 000322292800061

Scopus: 2-s2.0-84879283087
[ Google Scholar ]
18
17
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/1960
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Narancić, Tanja
AU  - Kadivojević, Jelena
AU  - Jovanović, Predrag
AU  - Francuski, Đorđe
AU  - Bigović, Miljan
AU  - Maslak, Veselin
AU  - Savić, Vladimir
AU  - Vasiljević, Branka
AU  - O'Connor, Kevin
AU  - Nikodinović-Runić, Jasmina
PY  - 2013
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/1960
AB  - A novel whole cell system based on recombinantly expressed 4-oxalocrotonate tautomerase (4-OT) was developed and shown to be an effective biocatalyst for the asymmetric Michael addition of acetaldehyde to beta-nitrostyrenes. Optimal ratio of substrates (2 mM beta-nitrostyrenes and 20 mM acetaldehyde) and biocatalyst of 5 g of cell dry weight of biocatalyst per liter was determined. Through further bioprocess improvement by sequential addition of substrate 10 mM nitrostyrene biotransformation was achieved within 150 min. Excellent enantioselectivity (>99% ee) and product yields of up to 60% were obtained with beta-nitrostyrene substrate. The biotransformation product, 4-nitro-3-phenyl-butanal, was isolated from aqueous media and further transformed into the corresponding amino alcohol. The biocatalyst exhibited lower reaction rates with p-Cl-, o-Cl- and p-F-beta-nitrostyrenes with product yields of 38%, 51%, 31% and ee values of 84%, 88% and 94% respectively. The importance of the terminal,proline of 4-UT was confirmed by two proline enriched variants and homology modeling.
PB  - Elsevier Sci Ltd, Oxford
T2  - Bioresource Technology
T1  - Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase
VL  - 142
SP  - 462
EP  - 468
DO  - 10.1016/j.biortech.2013.05.074
ER  - 
@article{
author = "Narancić, Tanja and Kadivojević, Jelena and Jovanović, Predrag and Francuski, Đorđe and Bigović, Miljan and Maslak, Veselin and Savić, Vladimir and Vasiljević, Branka and O'Connor, Kevin and Nikodinović-Runić, Jasmina",
year = "2013",
abstract = "A novel whole cell system based on recombinantly expressed 4-oxalocrotonate tautomerase (4-OT) was developed and shown to be an effective biocatalyst for the asymmetric Michael addition of acetaldehyde to beta-nitrostyrenes. Optimal ratio of substrates (2 mM beta-nitrostyrenes and 20 mM acetaldehyde) and biocatalyst of 5 g of cell dry weight of biocatalyst per liter was determined. Through further bioprocess improvement by sequential addition of substrate 10 mM nitrostyrene biotransformation was achieved within 150 min. Excellent enantioselectivity (>99% ee) and product yields of up to 60% were obtained with beta-nitrostyrene substrate. The biotransformation product, 4-nitro-3-phenyl-butanal, was isolated from aqueous media and further transformed into the corresponding amino alcohol. The biocatalyst exhibited lower reaction rates with p-Cl-, o-Cl- and p-F-beta-nitrostyrenes with product yields of 38%, 51%, 31% and ee values of 84%, 88% and 94% respectively. The importance of the terminal,proline of 4-UT was confirmed by two proline enriched variants and homology modeling.",
publisher = "Elsevier Sci Ltd, Oxford",
journal = "Bioresource Technology",
title = "Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase",
volume = "142",
pages = "462-468",
doi = "10.1016/j.biortech.2013.05.074"
}
Narancić, T., Kadivojević, J., Jovanović, P., Francuski, Đ., Bigović, M., Maslak, V., Savić, V., Vasiljević, B., O'Connor, K.,& Nikodinović-Runić, J.. (2013). Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase. in Bioresource Technology
Elsevier Sci Ltd, Oxford., 142, 462-468.
https://doi.org/10.1016/j.biortech.2013.05.074
Narancić T, Kadivojević J, Jovanović P, Francuski Đ, Bigović M, Maslak V, Savić V, Vasiljević B, O'Connor K, Nikodinović-Runić J. Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase. in Bioresource Technology. 2013;142:462-468.
doi:10.1016/j.biortech.2013.05.074 .
Narancić, Tanja, Kadivojević, Jelena, Jovanović, Predrag, Francuski, Đorđe, Bigović, Miljan, Maslak, Veselin, Savić, Vladimir, Vasiljević, Branka, O'Connor, Kevin, Nikodinović-Runić, Jasmina, "Highly efficient Michael-type addition of acetaldehyde to beta-nitrostyrenes by whole resting cells of Escherichia coli expressing 4-oxalocrotonate tautomerase" in Bioresource Technology, 142 (2013):462-468,
https://doi.org/10.1016/j.biortech.2013.05.074 . .

DSpace software copyright © 2002-2015  DuraSpace
About the RADaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCollectionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the RADaR Repository | Send Feedback

OpenAIRERCUB