Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein
Abstract
P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) are two members of the adenosine triphosphate (ATP) binding cassette (ABC) family of transporters which function as membrane efflux transporters and display considerable substrate promiscuity. Both are known to significantly influence the absorption, distribution and elimination of drugs, mediate drug-drug interactions and contribute to multiple drug resistance (MDR) of cancer cells. Correspondingly, timely characterization of the interaction of novel leads and drug candidates with these two transporters is of great importance. In this study, several computational classification models for prediction of transport and inhibition of P-gp and BCRP, respectively, were developed based on newly compiled and critically evaluated experimental data. Artificial neural network (ANN) and support vector machine (SVM) ensemble based models were explored, as well as knowledge-based approaches to descriptor selection. The av...erage overall classification accuracy of best performing models was 82% for P-gp transport, 88% for BCRP transport, 89% for P-gp inhibition and 87% for BCRP inhibition, determined across an array of different test sets. An analysis of substrate overlap between P-gp and BCRP was also performed. The accuracy, simplicity and interpretability of the proposed models suggest that they could be of significant utility in the drug discovery and development settings.
Keywords:
classifier model / prediction / multiple drug resistance / breast cancer resistance protein / P-glycoproteinSource:
Saudi Pharmaceutical Journal, 2014, 25, 12, 955-982Publisher:
- Taylor & Francis Ltd, Abingdon
Funding / projects:
DOI: 10.1080/1062936X.2014.976265
ISSN: 1062-936X
PubMed: 25435255
WoS: 000346571500002
Scopus: 2-s2.0-84919866774
Collections
Institution/Community
PharmacyTY - JOUR AU - Erić, Slavica AU - Kalinić, Marko AU - Ilić, K. AU - Zloh, Mire PY - 2014 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2133 AB - P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) are two members of the adenosine triphosphate (ATP) binding cassette (ABC) family of transporters which function as membrane efflux transporters and display considerable substrate promiscuity. Both are known to significantly influence the absorption, distribution and elimination of drugs, mediate drug-drug interactions and contribute to multiple drug resistance (MDR) of cancer cells. Correspondingly, timely characterization of the interaction of novel leads and drug candidates with these two transporters is of great importance. In this study, several computational classification models for prediction of transport and inhibition of P-gp and BCRP, respectively, were developed based on newly compiled and critically evaluated experimental data. Artificial neural network (ANN) and support vector machine (SVM) ensemble based models were explored, as well as knowledge-based approaches to descriptor selection. The average overall classification accuracy of best performing models was 82% for P-gp transport, 88% for BCRP transport, 89% for P-gp inhibition and 87% for BCRP inhibition, determined across an array of different test sets. An analysis of substrate overlap between P-gp and BCRP was also performed. The accuracy, simplicity and interpretability of the proposed models suggest that they could be of significant utility in the drug discovery and development settings. PB - Taylor & Francis Ltd, Abingdon T2 - Saudi Pharmaceutical Journal T1 - Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein VL - 25 IS - 12 SP - 955 EP - 982 DO - 10.1080/1062936X.2014.976265 ER -
@article{ author = "Erić, Slavica and Kalinić, Marko and Ilić, K. and Zloh, Mire", year = "2014", abstract = "P-glycoprotein (P-gp/ABCB1) and breast cancer resistance protein (BCRP/ABCG2) are two members of the adenosine triphosphate (ATP) binding cassette (ABC) family of transporters which function as membrane efflux transporters and display considerable substrate promiscuity. Both are known to significantly influence the absorption, distribution and elimination of drugs, mediate drug-drug interactions and contribute to multiple drug resistance (MDR) of cancer cells. Correspondingly, timely characterization of the interaction of novel leads and drug candidates with these two transporters is of great importance. In this study, several computational classification models for prediction of transport and inhibition of P-gp and BCRP, respectively, were developed based on newly compiled and critically evaluated experimental data. Artificial neural network (ANN) and support vector machine (SVM) ensemble based models were explored, as well as knowledge-based approaches to descriptor selection. The average overall classification accuracy of best performing models was 82% for P-gp transport, 88% for BCRP transport, 89% for P-gp inhibition and 87% for BCRP inhibition, determined across an array of different test sets. An analysis of substrate overlap between P-gp and BCRP was also performed. The accuracy, simplicity and interpretability of the proposed models suggest that they could be of significant utility in the drug discovery and development settings.", publisher = "Taylor & Francis Ltd, Abingdon", journal = "Saudi Pharmaceutical Journal", title = "Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein", volume = "25", number = "12", pages = "955-982", doi = "10.1080/1062936X.2014.976265" }
Erić, S., Kalinić, M., Ilić, K.,& Zloh, M.. (2014). Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein. in Saudi Pharmaceutical Journal Taylor & Francis Ltd, Abingdon., 25(12), 955-982. https://doi.org/10.1080/1062936X.2014.976265
Erić S, Kalinić M, Ilić K, Zloh M. Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein. in Saudi Pharmaceutical Journal. 2014;25(12):955-982. doi:10.1080/1062936X.2014.976265 .
Erić, Slavica, Kalinić, Marko, Ilić, K., Zloh, Mire, "Computational classification models for predicting the interaction of drugs with P-glycoprotein and breast cancer resistance protein" in Saudi Pharmaceutical Journal, 25, no. 12 (2014):955-982, https://doi.org/10.1080/1062936X.2014.976265 . .