Show simple item record

dc.creatorKostić, Srdan
dc.creatorVasović, Nebojša
dc.creatorFranović, Igor
dc.creatorTodorović, Kristina
dc.date.accessioned2019-09-02T11:41:24Z
dc.date.available2019-09-02T11:41:24Z
dc.date.issued2014
dc.identifier.issn1555-1423
dc.identifier.urihttps://farfar.pharmacy.bg.ac.rs/handle/123456789/2193
dc.description.abstractA simple model of earthquake nucleation that may account for the onset of chaotic dynamics is proposed and analyzed. It represents a generalization of the Burridge-Knopoff single-block model with Dieterich-Ruina's rate-and state-dependent friction law. It is demonstrated that deterministic chaos may emerge when some of the parameters are assumed to undergo small oscillations about their equilibrium values. Implementing the standard numerical methods from the theory of dynamical systems, the analysis is carried out for the cases having one or two periodically variable parameters, such that the appropriate bifurcation diagrams, phase portraits, power spectra, and the Lyapunov exponents are obtained. The results of analysis indicate two different scenarios to chaos. On one side, the Ruelle-Takens-Newhouse route to chaos is observed for the cases of limit amplitude perturbations. On the other side, when the angular frequency is assumed constant for the value near the periodic motion of the block in an unperturbed case, variation of oscillation amplitudes probably gives rise to global bifurcations, with immediate occurrence of chaotic behavior. Further analysis shows that chaotic behavior emerges only for small oscillation frequencies and higher perturbation amplitudes when two perturbed parameters are brought into play. If higher oscillation frequencies are assumed, no bifurcation occurs, and the system under study exhibits only the periodic motion. In contrast to the previous research, the onset of chaos is observed for much smaller values of the stress ratio parameter. In other words, even the relatively small perturbations of the control parameters could lead to deterministic chaos and, thus, to instabilities and earthquakes.en
dc.publisherAsme, New York
dc.relationinfo:eu-repo/grantAgreement/MESTD/Basic Research (BR or ON)/176016/RS//
dc.rightsrestrictedAccess
dc.sourceJournal of Computational and Nonlinear Dynamics
dc.subjectspring-block modelen
dc.subjectcoupled oscillationsen
dc.subjectspring constanten
dc.subjectstress ratioen
dc.subjectdeterministic chaosen
dc.titleComplex Dynamics of Spring-Block Earthquake Model Under Periodic Parameter Perturbationsen
dc.typearticle
dc.rights.licenseARR
dcterms.abstractКостић, Срдан; Тодоровић, Кристина; Франовић, Игор; Васовић, Небојша;
dc.citation.volume9
dc.citation.issue3
dc.citation.other9(3): -
dc.citation.rankM22
dc.identifier.wos000337047100019
dc.identifier.doi10.1115/1.4026259
dc.identifier.scopus2-s2.0-84896502522
dc.identifier.rcubconv_3096
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record