ФарФаР - Фармацеутски факултет, репозиторијум
Универзитет у Београду, Фармацеутски факултет
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ФарФаР
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • Преглед записа
  •   ФарФаР
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quantitative structure-retention relationships applied to development of liquid chromatography gradient-elution method for the separation of sartans

Само за регистроване кориснике
2016
Аутори
Golubović, Jelena
Protić, Ana
Otašević, Biljana
Zečević, Mira
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
QSRR are mathematically derived relationships between the chromatographic parameters determined for a representative series of analytes in given separation systems and the molecular descriptors accounting for the structural differences among the investigated "analytes. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. The aim of the present work was to optimize separation of six angiotensin receptor antagonists, so-called sartans: losartan, valsartan, irbesartan, telmisartan, candesartan cilexetil and eprosartan in a gradient-elution HPLC method. For this purpose, ANN as a mathematical tool was used for establishing a QSRR model based on molecular descriptors of sartans and varied instrumental conditions. The optimized model can be further used for prediction of an external congener of sartans and analysis of the influence of the analyte structure, represented through molecular descriptors, on retention behaviour. Mol...ecular descriptors included in modelling were electrostatic, geometrical and quantum-chemical descriptors: connolly solvent excluded volume non-1,4 van der Waals energy, octanol/water distribution coefficient, polarizability, number of proton-donor sites and number of proton-acceptor sites. Varied instrumental conditions were gradient time, buffer pH and buffer molarity. High prediction ability of the optimized network enabled complete separation of the analytes within the run time of 15.5 min under following conditions: gradient time of 12.5 min, buffer pH of 3.95 and buffer molarity of 25 mM. Applied methodology showed the potential to predict retention behaviour of an external analyte with the properties within the training space. Connolly solvent excluded volume, polarizability and number of proton-acceptor sites appeared to be most influential paramateres on retention behaviour of the sartans.

Извор:
Talanta, 2016, 150, 190-197
Издавач:
  • Elsevier Science BV, Amsterdam
Финансирање / пројекти:
  • Синтеза, квантитативни однос између структуре и дејства, физичко-хемијска карактеризација и анализа фармаколошки активних супстанци (RS-172033)

DOI: 10.1016/j.talanta.2015.12.035

ISSN: 0039-9140

PubMed: 26838399

WoS: 000370770500026

Scopus: 2-s2.0-84951014314
[ Google Scholar ]
13
14
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/2563
Колекције
  • Radovi istraživača / Researchers’ publications
Институција/група
Pharmacy
TY  - JOUR
AU  - Golubović, Jelena
AU  - Protić, Ana
AU  - Otašević, Biljana
AU  - Zečević, Mira
PY  - 2016
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2563
AB  - QSRR are mathematically derived relationships between the chromatographic parameters determined for a representative series of analytes in given separation systems and the molecular descriptors accounting for the structural differences among the investigated "analytes. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. The aim of the present work was to optimize separation of six angiotensin receptor antagonists, so-called sartans: losartan, valsartan, irbesartan, telmisartan, candesartan cilexetil and eprosartan in a gradient-elution HPLC method. For this purpose, ANN as a mathematical tool was used for establishing a QSRR model based on molecular descriptors of sartans and varied instrumental conditions. The optimized model can be further used for prediction of an external congener of sartans and analysis of the influence of the analyte structure, represented through molecular descriptors, on retention behaviour. Molecular descriptors included in modelling were electrostatic, geometrical and quantum-chemical descriptors: connolly solvent excluded volume non-1,4 van der Waals energy, octanol/water distribution coefficient, polarizability, number of proton-donor sites and number of proton-acceptor sites. Varied instrumental conditions were gradient time, buffer pH and buffer molarity. High prediction ability of the optimized network enabled complete separation of the analytes within the run time of 15.5 min under following conditions: gradient time of 12.5 min, buffer pH of 3.95 and buffer molarity of 25 mM. Applied methodology showed the potential to predict retention behaviour of an external analyte with the properties within the training space. Connolly solvent excluded volume, polarizability and number of proton-acceptor sites appeared to be most influential paramateres on retention behaviour of the sartans.
PB  - Elsevier Science BV, Amsterdam
T2  - Talanta
T1  - Quantitative structure-retention relationships applied to development of liquid chromatography gradient-elution method for the separation of sartans
VL  - 150
SP  - 190
EP  - 197
DO  - 10.1016/j.talanta.2015.12.035
UR  - conv_3502
ER  - 
@article{
author = "Golubović, Jelena and Protić, Ana and Otašević, Biljana and Zečević, Mira",
year = "2016",
abstract = "QSRR are mathematically derived relationships between the chromatographic parameters determined for a representative series of analytes in given separation systems and the molecular descriptors accounting for the structural differences among the investigated "analytes. Artificial neural network is a technique of data analysis, which sets out to emulate the human brain's way of working. The aim of the present work was to optimize separation of six angiotensin receptor antagonists, so-called sartans: losartan, valsartan, irbesartan, telmisartan, candesartan cilexetil and eprosartan in a gradient-elution HPLC method. For this purpose, ANN as a mathematical tool was used for establishing a QSRR model based on molecular descriptors of sartans and varied instrumental conditions. The optimized model can be further used for prediction of an external congener of sartans and analysis of the influence of the analyte structure, represented through molecular descriptors, on retention behaviour. Molecular descriptors included in modelling were electrostatic, geometrical and quantum-chemical descriptors: connolly solvent excluded volume non-1,4 van der Waals energy, octanol/water distribution coefficient, polarizability, number of proton-donor sites and number of proton-acceptor sites. Varied instrumental conditions were gradient time, buffer pH and buffer molarity. High prediction ability of the optimized network enabled complete separation of the analytes within the run time of 15.5 min under following conditions: gradient time of 12.5 min, buffer pH of 3.95 and buffer molarity of 25 mM. Applied methodology showed the potential to predict retention behaviour of an external analyte with the properties within the training space. Connolly solvent excluded volume, polarizability and number of proton-acceptor sites appeared to be most influential paramateres on retention behaviour of the sartans.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "Talanta",
title = "Quantitative structure-retention relationships applied to development of liquid chromatography gradient-elution method for the separation of sartans",
volume = "150",
pages = "190-197",
doi = "10.1016/j.talanta.2015.12.035",
url = "conv_3502"
}
Golubović, J., Protić, A., Otašević, B.,& Zečević, M.. (2016). Quantitative structure-retention relationships applied to development of liquid chromatography gradient-elution method for the separation of sartans. in Talanta
Elsevier Science BV, Amsterdam., 150, 190-197.
https://doi.org/10.1016/j.talanta.2015.12.035
conv_3502
Golubović J, Protić A, Otašević B, Zečević M. Quantitative structure-retention relationships applied to development of liquid chromatography gradient-elution method for the separation of sartans. in Talanta. 2016;150:190-197.
doi:10.1016/j.talanta.2015.12.035
conv_3502 .
Golubović, Jelena, Protić, Ana, Otašević, Biljana, Zečević, Mira, "Quantitative structure-retention relationships applied to development of liquid chromatography gradient-elution method for the separation of sartans" in Talanta, 150 (2016):190-197,
https://doi.org/10.1016/j.talanta.2015.12.035 .,
conv_3502 .

DSpace software copyright © 2002-2015  DuraSpace
О ФарФаР-у | Пошаљите запажања

OpenAIRERCUB
 

 

Комплетан репозиторијумИнституцијеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О ФарФаР-у | Пошаљите запажања

OpenAIRERCUB