ФарФаР - Фармацеутски факултет, репозиторијум
Универзитет у Београду, Фармацеутски факултет
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ФарФаР
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • Преглед записа
  •   ФарФаР
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mean Field Dynamics of Networks of Delay-coupled Noisy Excitable Units

Нема приказа
Аутори
Franović, Igor
Todorović, Kristina
Vasović, Nebojša
Burić, Nikola
Конференцијски прилог (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
We use the mean-field approach to analyze the collective dynamics in macroscopic networks of stochastic Fitzhugh-Nagumo units with delayed couplings. The conditions for validity of the two main approximations behind the model, called the Gaussian approximation and the Quasi-independence approximation, are examined. It is shown that the dynamics of the mean-field model may indicate in a self-consistent fashion the parameter domains where the Quasi-independence approximation fails. Apart from a network of globally coupled units, we also consider the paradigmatic setup of two interacting assemblies to demonstrate how our framework may be extended to hierarchical and modular networks. In both cases, the mean-field model can be used to qualitatively analyze the stability of the system, as well as the scenarios for the onset and the suppression of the collective mode. In quantitative terms, the mean-field model is capable of predicting the average oscillation frequency corresponding to the g...lobal variables of the exact system.

Извор:
Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015 Proce, 2016, 1738
Издавач:
  • Amer Inst Physics, Melville

DOI: 10.1063/1.4951987

ISSN: 0094-243X

WoS: 000380803300224

Scopus: 2-s2.0-84984565458
[ Google Scholar ]
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/2665
Колекције
  • Radovi istraživača / Researchers’ publications
Институција/група
Pharmacy
TY  - CONF
AU  - Franović, Igor
AU  - Todorović, Kristina
AU  - Vasović, Nebojša
AU  - Burić, Nikola
PY  - 2016
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2665
AB  - We use the mean-field approach to analyze the collective dynamics in macroscopic networks of stochastic Fitzhugh-Nagumo units with delayed couplings. The conditions for validity of the two main approximations behind the model, called the Gaussian approximation and the Quasi-independence approximation, are examined. It is shown that the dynamics of the mean-field model may indicate in a self-consistent fashion the parameter domains where the Quasi-independence approximation fails. Apart from a network of globally coupled units, we also consider the paradigmatic setup of two interacting assemblies to demonstrate how our framework may be extended to hierarchical and modular networks. In both cases, the mean-field model can be used to qualitatively analyze the stability of the system, as well as the scenarios for the onset and the suppression of the collective mode. In quantitative terms, the mean-field model is capable of predicting the average oscillation frequency corresponding to the global variables of the exact system.
PB  - Amer Inst Physics, Melville
C3  - Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015 Proce
T1  - Mean Field Dynamics of Networks of Delay-coupled Noisy Excitable Units
VL  - 1738
DO  - 10.1063/1.4951987
ER  - 
@conference{
author = "Franović, Igor and Todorović, Kristina and Vasović, Nebojša and Burić, Nikola",
year = "2016",
abstract = "We use the mean-field approach to analyze the collective dynamics in macroscopic networks of stochastic Fitzhugh-Nagumo units with delayed couplings. The conditions for validity of the two main approximations behind the model, called the Gaussian approximation and the Quasi-independence approximation, are examined. It is shown that the dynamics of the mean-field model may indicate in a self-consistent fashion the parameter domains where the Quasi-independence approximation fails. Apart from a network of globally coupled units, we also consider the paradigmatic setup of two interacting assemblies to demonstrate how our framework may be extended to hierarchical and modular networks. In both cases, the mean-field model can be used to qualitatively analyze the stability of the system, as well as the scenarios for the onset and the suppression of the collective mode. In quantitative terms, the mean-field model is capable of predicting the average oscillation frequency corresponding to the global variables of the exact system.",
publisher = "Amer Inst Physics, Melville",
journal = "Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015 Proce",
title = "Mean Field Dynamics of Networks of Delay-coupled Noisy Excitable Units",
volume = "1738",
doi = "10.1063/1.4951987"
}
Franović, I., Todorović, K., Vasović, N.,& Burić, N.. (2016). Mean Field Dynamics of Networks of Delay-coupled Noisy Excitable Units. in Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015 Proce
Amer Inst Physics, Melville., 1738.
https://doi.org/10.1063/1.4951987
Franović I, Todorović K, Vasović N, Burić N. Mean Field Dynamics of Networks of Delay-coupled Noisy Excitable Units. in Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015 Proce. 2016;1738.
doi:10.1063/1.4951987 .
Franović, Igor, Todorović, Kristina, Vasović, Nebojša, Burić, Nikola, "Mean Field Dynamics of Networks of Delay-coupled Noisy Excitable Units" in Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2015 Proce, 1738 (2016),
https://doi.org/10.1063/1.4951987 . .

DSpace software copyright © 2002-2015  DuraSpace
О ФарФаР-у | Пошаљите запажања

OpenAIRERCUB
 

 

Комплетан репозиторијумГрупеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О ФарФаР-у | Пошаљите запажања

OpenAIRERCUB