Influence of the mobile phase and molecular structure parameters on the retention behavior of protonated basic solutes in chaotropic chromatography
Samo za registrovane korisnike
2017
Članak u časopisu (Objavljena verzija)

Metapodaci
Prikaz svih podataka o dokumentuApstrakt
In this study, we present novel insights into the pH-dependent retention behavior of protonated basic solutes in chaotropic chromatography. To this end, two sets of experiments were performed to distinguish between mobile phase pH and ionic strength effects. In the first set, the ionic strength (I) was varied with the concentration of NaPF6 and additives that adjusted the mobile phase pH, while in the second set, I was kept constant by adding the appropriate amount of NaCl. In each set, the retention behavior of 13 analytes was qualitatively examined in 21 chromatographic systems, which were defined by the NaPF6 concentration in their aqueous phases (1-50 mM) and the pH of their mobile phases (2,3 or 4); the acetonitrile content was fixed at 40%. The addition of NaCl significantly reduced the differences among retention factors at studied pH values due to the effect of the Na+ ions on PF6- adsorption to the stationary phase and the magnitude of the consequential development of the surf...ace potential. A quantitative description of the observed phenomenon was obtained by an extended thermodynamic approach. The contribution of ion-pair formation in the stationary phase to the retention of the solutes was confirmed across models at the studied pH values in the set with varying I In the systems with a constant I, the shielding effect of the Na+ ions on the surface charge lowered the attractive surface potential and diminished the aforementioned interactions and hence the effect of the mobile phase pH on analyte retention. Eventually, we developed a readily interpretable empirical retention model that simultaneously takes into account analyte molecular structures and the most relevant chromatographic factors. Its coefficients have clear physical meaning, and owing to its good predictive capabilities, the model could be successfully used to clarify the contributions of analyte molecular structures and chromatographic factors to the specific processes underlying separation in chaotropic chromatography.
Ključne reči:
Chaotropic chromatography / pH-dependent retention behavior / Ionic strength effects / Empirical retention modelIzvor:
Journal of Chromatography A, 2017, 1511, 68-76Izdavač:
- Elsevier Science BV, Amsterdam
Finansiranje / projekti:
- Modelovanje različitih hromatografskih sistema sa hemometrijskim pristupom u farmaceutskoj analizi (RS-172052)
DOI: 10.1016/j.chroma.2017.06.069
ISSN: 0021-9673
PubMed: 28697932
WoS: 000406986000008
Scopus: 2-s2.0-85022000646
Institucija/grupa
PharmacyTY - JOUR AU - Colović, Jelena AU - Kalinić, Marko AU - Vemić, Ana AU - Erić, Slavica AU - Malenović, Anđelija PY - 2017 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2807 AB - In this study, we present novel insights into the pH-dependent retention behavior of protonated basic solutes in chaotropic chromatography. To this end, two sets of experiments were performed to distinguish between mobile phase pH and ionic strength effects. In the first set, the ionic strength (I) was varied with the concentration of NaPF6 and additives that adjusted the mobile phase pH, while in the second set, I was kept constant by adding the appropriate amount of NaCl. In each set, the retention behavior of 13 analytes was qualitatively examined in 21 chromatographic systems, which were defined by the NaPF6 concentration in their aqueous phases (1-50 mM) and the pH of their mobile phases (2,3 or 4); the acetonitrile content was fixed at 40%. The addition of NaCl significantly reduced the differences among retention factors at studied pH values due to the effect of the Na+ ions on PF6- adsorption to the stationary phase and the magnitude of the consequential development of the surface potential. A quantitative description of the observed phenomenon was obtained by an extended thermodynamic approach. The contribution of ion-pair formation in the stationary phase to the retention of the solutes was confirmed across models at the studied pH values in the set with varying I In the systems with a constant I, the shielding effect of the Na+ ions on the surface charge lowered the attractive surface potential and diminished the aforementioned interactions and hence the effect of the mobile phase pH on analyte retention. Eventually, we developed a readily interpretable empirical retention model that simultaneously takes into account analyte molecular structures and the most relevant chromatographic factors. Its coefficients have clear physical meaning, and owing to its good predictive capabilities, the model could be successfully used to clarify the contributions of analyte molecular structures and chromatographic factors to the specific processes underlying separation in chaotropic chromatography. PB - Elsevier Science BV, Amsterdam T2 - Journal of Chromatography A T1 - Influence of the mobile phase and molecular structure parameters on the retention behavior of protonated basic solutes in chaotropic chromatography VL - 1511 SP - 68 EP - 76 DO - 10.1016/j.chroma.2017.06.069 ER -
@article{ author = "Colović, Jelena and Kalinić, Marko and Vemić, Ana and Erić, Slavica and Malenović, Anđelija", year = "2017", abstract = "In this study, we present novel insights into the pH-dependent retention behavior of protonated basic solutes in chaotropic chromatography. To this end, two sets of experiments were performed to distinguish between mobile phase pH and ionic strength effects. In the first set, the ionic strength (I) was varied with the concentration of NaPF6 and additives that adjusted the mobile phase pH, while in the second set, I was kept constant by adding the appropriate amount of NaCl. In each set, the retention behavior of 13 analytes was qualitatively examined in 21 chromatographic systems, which were defined by the NaPF6 concentration in their aqueous phases (1-50 mM) and the pH of their mobile phases (2,3 or 4); the acetonitrile content was fixed at 40%. The addition of NaCl significantly reduced the differences among retention factors at studied pH values due to the effect of the Na+ ions on PF6- adsorption to the stationary phase and the magnitude of the consequential development of the surface potential. A quantitative description of the observed phenomenon was obtained by an extended thermodynamic approach. The contribution of ion-pair formation in the stationary phase to the retention of the solutes was confirmed across models at the studied pH values in the set with varying I In the systems with a constant I, the shielding effect of the Na+ ions on the surface charge lowered the attractive surface potential and diminished the aforementioned interactions and hence the effect of the mobile phase pH on analyte retention. Eventually, we developed a readily interpretable empirical retention model that simultaneously takes into account analyte molecular structures and the most relevant chromatographic factors. Its coefficients have clear physical meaning, and owing to its good predictive capabilities, the model could be successfully used to clarify the contributions of analyte molecular structures and chromatographic factors to the specific processes underlying separation in chaotropic chromatography.", publisher = "Elsevier Science BV, Amsterdam", journal = "Journal of Chromatography A", title = "Influence of the mobile phase and molecular structure parameters on the retention behavior of protonated basic solutes in chaotropic chromatography", volume = "1511", pages = "68-76", doi = "10.1016/j.chroma.2017.06.069" }
Colović, J., Kalinić, M., Vemić, A., Erić, S.,& Malenović, A.. (2017). Influence of the mobile phase and molecular structure parameters on the retention behavior of protonated basic solutes in chaotropic chromatography. in Journal of Chromatography A Elsevier Science BV, Amsterdam., 1511, 68-76. https://doi.org/10.1016/j.chroma.2017.06.069
Colović J, Kalinić M, Vemić A, Erić S, Malenović A. Influence of the mobile phase and molecular structure parameters on the retention behavior of protonated basic solutes in chaotropic chromatography. in Journal of Chromatography A. 2017;1511:68-76. doi:10.1016/j.chroma.2017.06.069 .
Colović, Jelena, Kalinić, Marko, Vemić, Ana, Erić, Slavica, Malenović, Anđelija, "Influence of the mobile phase and molecular structure parameters on the retention behavior of protonated basic solutes in chaotropic chromatography" in Journal of Chromatography A, 1511 (2017):68-76, https://doi.org/10.1016/j.chroma.2017.06.069 . .