Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the gamma-Aminobutyric Acid Type A Receptor (GABA(A)R) alpha 6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability
Authorized Users Only
2018
Authors
Knutson, Daniel
Kodali, Revathi
Divović, Branka

Treven, Marco
Stephen, Michael

Zahn, Nicolas
Dobričić, Vladimir

Huber, Alec
Meirelles, Matheus
Verma, Ranjit
Wimmer, Laurin
Witzigmann, Christopher
Arnold, Leggy

Chiou, Lih-Chu
Ernst, Margot

Mihovilović, Marko D.
Savić, Miroslav

Sieghart, Werner

Cook, James M.

Article (Published version)

Metadata
Show full item recordAbstract
Recent reports indicate that alpha 6/beta 2/3 gamma 2 GABA(A)R selective ligands may be important for the treatment of trigeminal activation-related pain and neuropsychiatric disorders with sensori-motor gating deficits. Based on 3 functionally alpha 6/beta 2/3 gamma 2 GABA(A)R selective pyrazoloquinolinones, 42 novel analogs were synthesized, and their in vitro metabolic stability and cytotoxicity as well as their in vivo pharmacokinetics, basic behavioral pharmacology, and effects on locomotion were investigated. Incorporation of deuterium into the methoxy substituents of the ligands increased their duration of action via improved metabolic stability and bioavailability, while their selectivity for the GABA(A)R a alpha 6 subtype was retained. 8b was identified as the lead compound with a substantially improved pharmacokinetic profile. The ligands allosterically modulated diazepam insensitive alpha 6/beta 2/3 gamma 2 GABA(A)Rs and were functionally silent at diazepam sensitive alpha 6.../beta 2/3 gamma 2 GABA(A)Rs, thus no sedation was detected. In addition, these analogs were not cytotoxic, which render them interesting candidates for treatment of CNS disorders mediated by GABA(A)R alpha 6/beta 2/3 gamma 2 subtypes.
Source:
Journal of Medicinal Chemistry, 2018, 61, 6, 2422-2446Publisher:
- Amer Chemical Soc, Washington
Funding / projects:
- National Institutes of Health (NIH) - R01 NS076517
DOI: 10.1021/acs.jmedchem.7b01664
ISSN: 0022-2623
PubMed: 29481759
WoS: 000428356600015
Scopus: 2-s2.0-85044203204
Collections
Institution/Community
PharmacyTY - JOUR AU - Knutson, Daniel AU - Kodali, Revathi AU - Divović, Branka AU - Treven, Marco AU - Stephen, Michael AU - Zahn, Nicolas AU - Dobričić, Vladimir AU - Huber, Alec AU - Meirelles, Matheus AU - Verma, Ranjit AU - Wimmer, Laurin AU - Witzigmann, Christopher AU - Arnold, Leggy AU - Chiou, Lih-Chu AU - Ernst, Margot AU - Mihovilović, Marko D. AU - Savić, Miroslav AU - Sieghart, Werner AU - Cook, James M. PY - 2018 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3147 AB - Recent reports indicate that alpha 6/beta 2/3 gamma 2 GABA(A)R selective ligands may be important for the treatment of trigeminal activation-related pain and neuropsychiatric disorders with sensori-motor gating deficits. Based on 3 functionally alpha 6/beta 2/3 gamma 2 GABA(A)R selective pyrazoloquinolinones, 42 novel analogs were synthesized, and their in vitro metabolic stability and cytotoxicity as well as their in vivo pharmacokinetics, basic behavioral pharmacology, and effects on locomotion were investigated. Incorporation of deuterium into the methoxy substituents of the ligands increased their duration of action via improved metabolic stability and bioavailability, while their selectivity for the GABA(A)R a alpha 6 subtype was retained. 8b was identified as the lead compound with a substantially improved pharmacokinetic profile. The ligands allosterically modulated diazepam insensitive alpha 6/beta 2/3 gamma 2 GABA(A)Rs and were functionally silent at diazepam sensitive alpha 6/beta 2/3 gamma 2 GABA(A)Rs, thus no sedation was detected. In addition, these analogs were not cytotoxic, which render them interesting candidates for treatment of CNS disorders mediated by GABA(A)R alpha 6/beta 2/3 gamma 2 subtypes. PB - Amer Chemical Soc, Washington T2 - Journal of Medicinal Chemistry T1 - Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the gamma-Aminobutyric Acid Type A Receptor (GABA(A)R) alpha 6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability VL - 61 IS - 6 SP - 2422 EP - 2446 DO - 10.1021/acs.jmedchem.7b01664 ER -
@article{ author = "Knutson, Daniel and Kodali, Revathi and Divović, Branka and Treven, Marco and Stephen, Michael and Zahn, Nicolas and Dobričić, Vladimir and Huber, Alec and Meirelles, Matheus and Verma, Ranjit and Wimmer, Laurin and Witzigmann, Christopher and Arnold, Leggy and Chiou, Lih-Chu and Ernst, Margot and Mihovilović, Marko D. and Savić, Miroslav and Sieghart, Werner and Cook, James M.", year = "2018", abstract = "Recent reports indicate that alpha 6/beta 2/3 gamma 2 GABA(A)R selective ligands may be important for the treatment of trigeminal activation-related pain and neuropsychiatric disorders with sensori-motor gating deficits. Based on 3 functionally alpha 6/beta 2/3 gamma 2 GABA(A)R selective pyrazoloquinolinones, 42 novel analogs were synthesized, and their in vitro metabolic stability and cytotoxicity as well as their in vivo pharmacokinetics, basic behavioral pharmacology, and effects on locomotion were investigated. Incorporation of deuterium into the methoxy substituents of the ligands increased their duration of action via improved metabolic stability and bioavailability, while their selectivity for the GABA(A)R a alpha 6 subtype was retained. 8b was identified as the lead compound with a substantially improved pharmacokinetic profile. The ligands allosterically modulated diazepam insensitive alpha 6/beta 2/3 gamma 2 GABA(A)Rs and were functionally silent at diazepam sensitive alpha 6/beta 2/3 gamma 2 GABA(A)Rs, thus no sedation was detected. In addition, these analogs were not cytotoxic, which render them interesting candidates for treatment of CNS disorders mediated by GABA(A)R alpha 6/beta 2/3 gamma 2 subtypes.", publisher = "Amer Chemical Soc, Washington", journal = "Journal of Medicinal Chemistry", title = "Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the gamma-Aminobutyric Acid Type A Receptor (GABA(A)R) alpha 6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability", volume = "61", number = "6", pages = "2422-2446", doi = "10.1021/acs.jmedchem.7b01664" }
Knutson, D., Kodali, R., Divović, B., Treven, M., Stephen, M., Zahn, N., Dobričić, V., Huber, A., Meirelles, M., Verma, R., Wimmer, L., Witzigmann, C., Arnold, L., Chiou, L., Ernst, M., Mihovilović, M. D., Savić, M., Sieghart, W.,& Cook, J. M.. (2018). Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the gamma-Aminobutyric Acid Type A Receptor (GABA(A)R) alpha 6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability. in Journal of Medicinal Chemistry Amer Chemical Soc, Washington., 61(6), 2422-2446. https://doi.org/10.1021/acs.jmedchem.7b01664
Knutson D, Kodali R, Divović B, Treven M, Stephen M, Zahn N, Dobričić V, Huber A, Meirelles M, Verma R, Wimmer L, Witzigmann C, Arnold L, Chiou L, Ernst M, Mihovilović MD, Savić M, Sieghart W, Cook JM. Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the gamma-Aminobutyric Acid Type A Receptor (GABA(A)R) alpha 6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability. in Journal of Medicinal Chemistry. 2018;61(6):2422-2446. doi:10.1021/acs.jmedchem.7b01664 .
Knutson, Daniel, Kodali, Revathi, Divović, Branka, Treven, Marco, Stephen, Michael, Zahn, Nicolas, Dobričić, Vladimir, Huber, Alec, Meirelles, Matheus, Verma, Ranjit, Wimmer, Laurin, Witzigmann, Christopher, Arnold, Leggy, Chiou, Lih-Chu, Ernst, Margot, Mihovilović, Marko D., Savić, Miroslav, Sieghart, Werner, Cook, James M., "Design and Synthesis of Novel Deuterated Ligands Functionally Selective for the gamma-Aminobutyric Acid Type A Receptor (GABA(A)R) alpha 6 Subtype with Improved Metabolic Stability and Enhanced Bioavailability" in Journal of Medicinal Chemistry, 61, no. 6 (2018):2422-2446, https://doi.org/10.1021/acs.jmedchem.7b01664 . .