Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments
Authorized Users Only
2018
Authors
Stojkovska, JasminaĐurđević, Željka
Jančić, Ivan

Bufan, Biljana

Milenković, Marina

Janković, Radmila
Mišković-Stanković, Vesna

Obradović, Bojana

Article (Published version)

Metadata
Show full item recordAbstract
In the present study, possibilities for using novel nanocomposites based on alginate and silver nanoparticles for wound treatment were investigated in a second-degree thermal burn model in Wistar rats. Silver nanoparticles (AgNPs) were electrochemically synthesized in alginate solutions that were further utilized to obtain the Ag/alginate solution and microfibers for subsequent in vivo studies. Daily applications of the Ag/alginate colloid solution, containing AgNPs, alginate and ascorbic acid (G3), wet Ag/alginate microfibers containing AgNPs (G5) and dry Ag/alginate microfibers containing AgNPs (G6) were compared to treatments with a commercial cream containing silver sulfadiazine (G2) and a commercial Ca-alginate wound dressing containing silver ions (G4), as well as to the untreated controls (G1). Results of the in vivo study have shown faster healing in treated wounds, which completely healed on day 19 (G4, G5 and G6) and 21 (G2 and G3) after the thermal injury, while the period f...or complete reepitelization of untreated wounds (G1) was 25 days. The macroscopic analysis has shown that scabs fell off between day 10 and 12 after the thermal injury induction in treated groups, whereas between day 15 and 16 in the control group. These macroscopic findings were supported by the results of histopathological analyses, which have shown enhanced granulation and reepithelization, reduced inflammation and improved organization of the extracellular matrix in treated groups without adverse effects. Among the treated groups, dressings based on Ca-alginate (G4-G6) induced enhanced healing as compared to the other two groups (G2, G3), which could be attributed to additional stimuli of released Ca2+. The obtained results indicated potentials of novel nanocomposites based on alginate and AgNPs for therapeutic applications in wound treatments.
Keywords:
Nanocomposites / alginate / silver nanoparticles / Ag / alginate colloid solution / microfibers / rat model / second degree thermal burnSource:
Journal of Biomaterials Applications, 2018, 32, 9, 1197-1211Publisher:
- Sage Publications Ltd, London
Funding / projects:
DOI: 10.1177/0885328218759564
ISSN: 0885-3282
PubMed: 29463162
WoS: 000429861500005
Scopus: 2-s2.0-85042429643
Collections
Institution/Community
PharmacyTY - JOUR AU - Stojkovska, Jasmina AU - Đurđević, Željka AU - Jančić, Ivan AU - Bufan, Biljana AU - Milenković, Marina AU - Janković, Radmila AU - Mišković-Stanković, Vesna AU - Obradović, Bojana PY - 2018 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3169 AB - In the present study, possibilities for using novel nanocomposites based on alginate and silver nanoparticles for wound treatment were investigated in a second-degree thermal burn model in Wistar rats. Silver nanoparticles (AgNPs) were electrochemically synthesized in alginate solutions that were further utilized to obtain the Ag/alginate solution and microfibers for subsequent in vivo studies. Daily applications of the Ag/alginate colloid solution, containing AgNPs, alginate and ascorbic acid (G3), wet Ag/alginate microfibers containing AgNPs (G5) and dry Ag/alginate microfibers containing AgNPs (G6) were compared to treatments with a commercial cream containing silver sulfadiazine (G2) and a commercial Ca-alginate wound dressing containing silver ions (G4), as well as to the untreated controls (G1). Results of the in vivo study have shown faster healing in treated wounds, which completely healed on day 19 (G4, G5 and G6) and 21 (G2 and G3) after the thermal injury, while the period for complete reepitelization of untreated wounds (G1) was 25 days. The macroscopic analysis has shown that scabs fell off between day 10 and 12 after the thermal injury induction in treated groups, whereas between day 15 and 16 in the control group. These macroscopic findings were supported by the results of histopathological analyses, which have shown enhanced granulation and reepithelization, reduced inflammation and improved organization of the extracellular matrix in treated groups without adverse effects. Among the treated groups, dressings based on Ca-alginate (G4-G6) induced enhanced healing as compared to the other two groups (G2, G3), which could be attributed to additional stimuli of released Ca2+. The obtained results indicated potentials of novel nanocomposites based on alginate and AgNPs for therapeutic applications in wound treatments. PB - Sage Publications Ltd, London T2 - Journal of Biomaterials Applications T1 - Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments VL - 32 IS - 9 SP - 1197 EP - 1211 DO - 10.1177/0885328218759564 ER -
@article{ author = "Stojkovska, Jasmina and Đurđević, Željka and Jančić, Ivan and Bufan, Biljana and Milenković, Marina and Janković, Radmila and Mišković-Stanković, Vesna and Obradović, Bojana", year = "2018", abstract = "In the present study, possibilities for using novel nanocomposites based on alginate and silver nanoparticles for wound treatment were investigated in a second-degree thermal burn model in Wistar rats. Silver nanoparticles (AgNPs) were electrochemically synthesized in alginate solutions that were further utilized to obtain the Ag/alginate solution and microfibers for subsequent in vivo studies. Daily applications of the Ag/alginate colloid solution, containing AgNPs, alginate and ascorbic acid (G3), wet Ag/alginate microfibers containing AgNPs (G5) and dry Ag/alginate microfibers containing AgNPs (G6) were compared to treatments with a commercial cream containing silver sulfadiazine (G2) and a commercial Ca-alginate wound dressing containing silver ions (G4), as well as to the untreated controls (G1). Results of the in vivo study have shown faster healing in treated wounds, which completely healed on day 19 (G4, G5 and G6) and 21 (G2 and G3) after the thermal injury, while the period for complete reepitelization of untreated wounds (G1) was 25 days. The macroscopic analysis has shown that scabs fell off between day 10 and 12 after the thermal injury induction in treated groups, whereas between day 15 and 16 in the control group. These macroscopic findings were supported by the results of histopathological analyses, which have shown enhanced granulation and reepithelization, reduced inflammation and improved organization of the extracellular matrix in treated groups without adverse effects. Among the treated groups, dressings based on Ca-alginate (G4-G6) induced enhanced healing as compared to the other two groups (G2, G3), which could be attributed to additional stimuli of released Ca2+. The obtained results indicated potentials of novel nanocomposites based on alginate and AgNPs for therapeutic applications in wound treatments.", publisher = "Sage Publications Ltd, London", journal = "Journal of Biomaterials Applications", title = "Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments", volume = "32", number = "9", pages = "1197-1211", doi = "10.1177/0885328218759564" }
Stojkovska, J., Đurđević, Ž., Jančić, I., Bufan, B., Milenković, M., Janković, R., Mišković-Stanković, V.,& Obradović, B.. (2018). Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments. in Journal of Biomaterials Applications Sage Publications Ltd, London., 32(9), 1197-1211. https://doi.org/10.1177/0885328218759564
Stojkovska J, Đurđević Ž, Jančić I, Bufan B, Milenković M, Janković R, Mišković-Stanković V, Obradović B. Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments. in Journal of Biomaterials Applications. 2018;32(9):1197-1211. doi:10.1177/0885328218759564 .
Stojkovska, Jasmina, Đurđević, Željka, Jančić, Ivan, Bufan, Biljana, Milenković, Marina, Janković, Radmila, Mišković-Stanković, Vesna, Obradović, Bojana, "Comparative in vivo evaluation of novel formulations based on alginate and silver nanoparticles for wound treatments" in Journal of Biomaterials Applications, 32, no. 9 (2018):1197-1211, https://doi.org/10.1177/0885328218759564 . .