FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Effect of six oximes on acutely anticholinesterase inhibitor-induced oxidative stress in rat plasma and brain

Authorized Users Only
2018
Authors
Antonijević, Evica
Kotur-Stevuljević, Jelena
Musilek, Kamil
Kosvancova, Andrea
Kuca, Kamil
Đukić-Ćosić, Danijela
Spasojević-Kalimanovska, Vesna
Antonijević, Biljana
Article (Published version)
Metadata
Show full item record
Abstract
Beside the key inhibition of acetylcholinesterase (AChE), involvement of oxidative stress in organophosphate (OP)-induced toxicity has been supported by experimental and human studies. On the other hand, according to our best knowledge, possible antioxidant properties of oximes, the only causal antidotes to OP-inhibited AChE, have been examined only by a few studies. Thus, we have determined the effect of four conventional (obidoxime, trimedoxime, pralidoxime, asoxime) and two promising experimental oximes (K027, K203) on dichlorvos (DDVP)-induced oxidative changes in vivo. Wistar rats (5/group) were treated with oxime (5% LD50 i.m) immediately after DDVP challenge (75% LD50 s.c). Oxidative stress biomarkers were determined in plasma and brain 60 min after the treatment: prooxidative-superoxide anion (O-2 (center dot-)) and total oxidative status (TOS); antioxidative-superoxide dismutase (SOD), total thiol (SH) groups, total antioxidant status (TAS) and paraoxonase (PON1); tissue oxida...tive stress burden-prooxidative-antioxidative balance (PAB) and oxidative stress index (OSI); oxidative tissue damage-malondialdehyde (MDA) and advanced oxidation protein products (AOPP). All oximes were able to attenuate DDVP-induced oxidative stress in rat plasma and brain. Changes of determined parameters in brain were not as prominent as it was seen in plasma. Based on OSI, better abilities of oxime K027, K203 and obidoxime to maintain DDVP-induced oxidative stress in rat brain were shown as compared to trimedoxime, pralidoxime and asoxime. Oximes can influence the complex in vivo redox processes that might contribute to their overall therapeutic efficacy. Further research is needed to understand the underlying molecular mechanisms involved in this phenomenon.

Keywords:
Pro-oxidants / Antioxidats / Oxime K027 / Oxime K203 / Dichlorvos / Efficacy
Source:
Archives of Toxicology, 2018, 92, 2, 745-757
Publisher:
  • Springer Heidelberg, Heidelberg
Projects:
  • Improvement and development of hygienic and technological procedures in production of animal originating foodstuffs with the aim of producing high-quality and safe products competetive on the global market (RS-46009)

DOI: 10.1007/s00204-017-2101-z

ISSN: 0340-5761

PubMed: 29098328

WoS: 000425526000016

Scopus: 2-s2.0-85032950416
[ Google Scholar ]
8
7
URI
http://farfar.pharmacy.bg.ac.rs/handle/123456789/3170
Collections
  • Radovi istraživača / Researchers’ publications
Institution
Pharmacy

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB