FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear dynamics behind the seismic cycle: One-dimensional phenomenological modeling

Authorized Users Only
2018
Authors
Kostić, Srdan
Vasović, Nebojša
Todorović, Kristina
Franović, Igor
Article (Published version)
Metadata
Show full item record
Abstract
In present paper, authors examine the dynamics of a spring-slider model, considered as a phenomenological setup of a geological fault motion. Research is based on an assumption of delayed interaction between the two blocks, which is an idea that dates back to original Burridge-Knopoff model. In contrast to this first model, group of blocks on each side of transmission zone (with delayed interaction) is replaced by a single block. Results obtained indicate predominant impact of the introduced time delay, whose decrease leads to transition from steady state or aseismic creep to seismic regime, where each part of the seismic cycle (co-seismic, post-seismic and inter-seismic) could be recognized. In particular, for coupling strength of order 10 2 observed system exhibit inverse Andronov-Hopf bifurcation for very small value of time delay, tau approximate to 0.01, when long-period (T = 12) and high-amplitude oscillations occur. Further increase of time delay, of order 10(-1), induces an occ...urrence of a direct Andronov-Hopf bifurcation, with short-period (T = 0.5) oscillations of approximately ten times smaller amplitude. This reduction in time delay could be the consequence of the increase of temperature due to frictional heating, or due to decrease of pressure which follows the sudden movement along the fault. Analysis is conducted for the parameter values consistent with previous laboratory findings and geological observations relevant from the seismological viewpoint.

Keywords:
Spring-block model / Time delay / Rate-and-state dependent friction law / Seismic cycle
Source:
Chaos Solitons & Fractals, 2018, 106, 310-316
Publisher:
  • Pergamon-Elsevier Science Ltd, Oxford
Funding / projects:
  • Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: significance for the formation of metallic and non-metallic mineral deposits (RS-176016)

DOI: 10.1016/j.chaos.2017.11.037

ISSN: 0960-0779

WoS: 000418932800040

Scopus: 2-s2.0-85037533755
[ Google Scholar ]
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/3204
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Kostić, Srdan
AU  - Vasović, Nebojša
AU  - Todorović, Kristina
AU  - Franović, Igor
PY  - 2018
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3204
AB  - In present paper, authors examine the dynamics of a spring-slider model, considered as a phenomenological setup of a geological fault motion. Research is based on an assumption of delayed interaction between the two blocks, which is an idea that dates back to original Burridge-Knopoff model. In contrast to this first model, group of blocks on each side of transmission zone (with delayed interaction) is replaced by a single block. Results obtained indicate predominant impact of the introduced time delay, whose decrease leads to transition from steady state or aseismic creep to seismic regime, where each part of the seismic cycle (co-seismic, post-seismic and inter-seismic) could be recognized. In particular, for coupling strength of order 10 2 observed system exhibit inverse Andronov-Hopf bifurcation for very small value of time delay, tau approximate to 0.01, when long-period (T = 12) and high-amplitude oscillations occur. Further increase of time delay, of order 10(-1), induces an occurrence of a direct Andronov-Hopf bifurcation, with short-period (T = 0.5) oscillations of approximately ten times smaller amplitude. This reduction in time delay could be the consequence of the increase of temperature due to frictional heating, or due to decrease of pressure which follows the sudden movement along the fault. Analysis is conducted for the parameter values consistent with previous laboratory findings and geological observations relevant from the seismological viewpoint.
PB  - Pergamon-Elsevier Science Ltd, Oxford
T2  - Chaos Solitons & Fractals
T1  - Nonlinear dynamics behind the seismic cycle: One-dimensional phenomenological modeling
VL  - 106
SP  - 310
EP  - 316
DO  - 10.1016/j.chaos.2017.11.037
ER  - 
@article{
author = "Kostić, Srdan and Vasović, Nebojša and Todorović, Kristina and Franović, Igor",
year = "2018",
abstract = "In present paper, authors examine the dynamics of a spring-slider model, considered as a phenomenological setup of a geological fault motion. Research is based on an assumption of delayed interaction between the two blocks, which is an idea that dates back to original Burridge-Knopoff model. In contrast to this first model, group of blocks on each side of transmission zone (with delayed interaction) is replaced by a single block. Results obtained indicate predominant impact of the introduced time delay, whose decrease leads to transition from steady state or aseismic creep to seismic regime, where each part of the seismic cycle (co-seismic, post-seismic and inter-seismic) could be recognized. In particular, for coupling strength of order 10 2 observed system exhibit inverse Andronov-Hopf bifurcation for very small value of time delay, tau approximate to 0.01, when long-period (T = 12) and high-amplitude oscillations occur. Further increase of time delay, of order 10(-1), induces an occurrence of a direct Andronov-Hopf bifurcation, with short-period (T = 0.5) oscillations of approximately ten times smaller amplitude. This reduction in time delay could be the consequence of the increase of temperature due to frictional heating, or due to decrease of pressure which follows the sudden movement along the fault. Analysis is conducted for the parameter values consistent with previous laboratory findings and geological observations relevant from the seismological viewpoint.",
publisher = "Pergamon-Elsevier Science Ltd, Oxford",
journal = "Chaos Solitons & Fractals",
title = "Nonlinear dynamics behind the seismic cycle: One-dimensional phenomenological modeling",
volume = "106",
pages = "310-316",
doi = "10.1016/j.chaos.2017.11.037"
}
Kostić, S., Vasović, N., Todorović, K.,& Franović, I.. (2018). Nonlinear dynamics behind the seismic cycle: One-dimensional phenomenological modeling. in Chaos Solitons & Fractals
Pergamon-Elsevier Science Ltd, Oxford., 106, 310-316.
https://doi.org/10.1016/j.chaos.2017.11.037
Kostić S, Vasović N, Todorović K, Franović I. Nonlinear dynamics behind the seismic cycle: One-dimensional phenomenological modeling. in Chaos Solitons & Fractals. 2018;106:310-316.
doi:10.1016/j.chaos.2017.11.037 .
Kostić, Srdan, Vasović, Nebojša, Todorović, Kristina, Franović, Igor, "Nonlinear dynamics behind the seismic cycle: One-dimensional phenomenological modeling" in Chaos Solitons & Fractals, 106 (2018):310-316,
https://doi.org/10.1016/j.chaos.2017.11.037 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB