Soluplus ® , Eudragit ® , HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO 2 process
rcub.bitstream.locked
2019
Authors
Milovanović, SĐuriš, Jelena

Dapcević, Aleksandra

Medarević, Đorđe

Ibrić, Svetlana

Zizović, I
Article (Published version)

Metadata
Show full item recordAbstract
The present work is aimed towards designing advanced materials by means of sustainable processes. In that sense, the utilization of supercritical CO 2 (scCO 2 ) for processing of pharmaceutical polymers (Soluplus ® , Eudragit ® , and hydroxypropyl methylcellulose acetate succinate), alone and with an addition of cardiovascular drug Carvedilol, was explored. Employed single-step static scCO 2 process (pressure of 30 MPa and temperature of 100 °C for 2 h) enabled fabrication of solvent-free polymeric foams and Carvedilol solid dispersions with controlled microstructure and average pore diameter of 101–257 μm suitable for application in the pharmaceutical industry. ScCO 2 did not remain in the foams after processing or affected the polymer composition, while Carvedilol formed hydrogen bonds with the polymers. Carvedilol was molecularly dispersed in the fabricated solid dispersions and its transition from the crystalline to amorphous form was complete. Korsmeyer-Peppas model was successful...ly used for the mathematical description of Carvedilol dissolution from solid dispersions. The dissolution rate of Carvedilol in acidic medium was significantly enhanced by its dispersion in tested polymers using the proposed high-pressure method.
Keywords:
Carvedilol / Eudragit ® / HPMC-AS / Solid dispersion / Soluplus ® / Supercritical CO 2Source:
Polymer Testing, 2019, 76, 54-64Publisher:
- Elsevier Ltd
Funding / projects:
- Functional physiologically active plant materials with additional values for application in pharmaceutical and food industry (RS-45017)
- Advanced technologies for controlled release from solid drug delivery systems (RS-34007)
- Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processing (RS-45007)
DOI: 10.1016/j.polymertesting.2019.03.001
ISSN: 0142-9418
WoS: 000479182700006
Scopus: 2-s2.0-85062807468
Collections
Institution/Community
PharmacyTY - JOUR AU - Milovanović, S AU - Đuriš, Jelena AU - Dapcević, Aleksandra AU - Medarević, Đorđe AU - Ibrić, Svetlana AU - Zizović, I PY - 2019 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3252 AB - The present work is aimed towards designing advanced materials by means of sustainable processes. In that sense, the utilization of supercritical CO 2 (scCO 2 ) for processing of pharmaceutical polymers (Soluplus ® , Eudragit ® , and hydroxypropyl methylcellulose acetate succinate), alone and with an addition of cardiovascular drug Carvedilol, was explored. Employed single-step static scCO 2 process (pressure of 30 MPa and temperature of 100 °C for 2 h) enabled fabrication of solvent-free polymeric foams and Carvedilol solid dispersions with controlled microstructure and average pore diameter of 101–257 μm suitable for application in the pharmaceutical industry. ScCO 2 did not remain in the foams after processing or affected the polymer composition, while Carvedilol formed hydrogen bonds with the polymers. Carvedilol was molecularly dispersed in the fabricated solid dispersions and its transition from the crystalline to amorphous form was complete. Korsmeyer-Peppas model was successfully used for the mathematical description of Carvedilol dissolution from solid dispersions. The dissolution rate of Carvedilol in acidic medium was significantly enhanced by its dispersion in tested polymers using the proposed high-pressure method. PB - Elsevier Ltd T2 - Polymer Testing T1 - Soluplus ® , Eudragit ® , HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO 2 process VL - 76 SP - 54 EP - 64 DO - 10.1016/j.polymertesting.2019.03.001 ER -
@article{ author = "Milovanović, S and Đuriš, Jelena and Dapcević, Aleksandra and Medarević, Đorđe and Ibrić, Svetlana and Zizović, I", year = "2019", abstract = "The present work is aimed towards designing advanced materials by means of sustainable processes. In that sense, the utilization of supercritical CO 2 (scCO 2 ) for processing of pharmaceutical polymers (Soluplus ® , Eudragit ® , and hydroxypropyl methylcellulose acetate succinate), alone and with an addition of cardiovascular drug Carvedilol, was explored. Employed single-step static scCO 2 process (pressure of 30 MPa and temperature of 100 °C for 2 h) enabled fabrication of solvent-free polymeric foams and Carvedilol solid dispersions with controlled microstructure and average pore diameter of 101–257 μm suitable for application in the pharmaceutical industry. ScCO 2 did not remain in the foams after processing or affected the polymer composition, while Carvedilol formed hydrogen bonds with the polymers. Carvedilol was molecularly dispersed in the fabricated solid dispersions and its transition from the crystalline to amorphous form was complete. Korsmeyer-Peppas model was successfully used for the mathematical description of Carvedilol dissolution from solid dispersions. The dissolution rate of Carvedilol in acidic medium was significantly enhanced by its dispersion in tested polymers using the proposed high-pressure method.", publisher = "Elsevier Ltd", journal = "Polymer Testing", title = "Soluplus ® , Eudragit ® , HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO 2 process", volume = "76", pages = "54-64", doi = "10.1016/j.polymertesting.2019.03.001" }
Milovanović, S., Đuriš, J., Dapcević, A., Medarević, Đ., Ibrić, S.,& Zizović, I.. (2019). Soluplus ® , Eudragit ® , HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO 2 process. in Polymer Testing Elsevier Ltd., 76, 54-64. https://doi.org/10.1016/j.polymertesting.2019.03.001
Milovanović S, Đuriš J, Dapcević A, Medarević Đ, Ibrić S, Zizović I. Soluplus ® , Eudragit ® , HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO 2 process. in Polymer Testing. 2019;76:54-64. doi:10.1016/j.polymertesting.2019.03.001 .
Milovanović, S, Đuriš, Jelena, Dapcević, Aleksandra, Medarević, Đorđe, Ibrić, Svetlana, Zizović, I, "Soluplus ® , Eudragit ® , HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO 2 process" in Polymer Testing, 76 (2019):54-64, https://doi.org/10.1016/j.polymertesting.2019.03.001 . .