Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity
Authorized Users Only
2020
Authors
Nikolić, Ines
Mitsou, Evgenia

Damjanović, Ana

Papadimitriou, Vassiliki
Antić-Stanković, Jelena

Stanojević, Boban
Xenakis, Aristotelis

Savić, Snežana

Article (Published version)

Metadata
Show full item recordAbstract
The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI < 0.2; pH: 4.73-5.73). Curcumi...n's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.
Keywords:
Low-energy nanoemulsions / Spontaneous emulsification / Curcumin / Atomic force microscopy / Antioxidant activity / (Anti)genotoxicitySource:
Journal of Molecular Liquids, 2020, 301Publisher:
- Elsevier B.V.
Funding / projects:
- Development of micro- and nanosystems as carriers for drugs with anti-inflammatory effect and methods for their characterization (RS-34031)
- Development of Micro- and Nanosystems as Carriers for Drugswith Anti-inflammatory Effect and Methods for Their Characterizationand OI 175011 Biological response modifiers in physiological and path-ological conditions.
DOI: 10.1016/j.molliq.2020.112479
ISSN: 0167-7322
WoS: 000445147000033
Scopus: 2-s2.0-85078037387
Collections
Institution/Community
PharmacyTY - JOUR AU - Nikolić, Ines AU - Mitsou, Evgenia AU - Damjanović, Ana AU - Papadimitriou, Vassiliki AU - Antić-Stanković, Jelena AU - Stanojević, Boban AU - Xenakis, Aristotelis AU - Savić, Snežana PY - 2020 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3528 AB - The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI < 0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities. PB - Elsevier B.V. T2 - Journal of Molecular Liquids T1 - Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity VL - 301 DO - 10.1016/j.molliq.2020.112479 ER -
@article{ author = "Nikolić, Ines and Mitsou, Evgenia and Damjanović, Ana and Papadimitriou, Vassiliki and Antić-Stanković, Jelena and Stanojević, Boban and Xenakis, Aristotelis and Savić, Snežana", year = "2020", abstract = "The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI < 0.2; pH: 4.73-5.73). Curcumin's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.", publisher = "Elsevier B.V.", journal = "Journal of Molecular Liquids", title = "Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity", volume = "301", doi = "10.1016/j.molliq.2020.112479" }
Nikolić, I., Mitsou, E., Damjanović, A., Papadimitriou, V., Antić-Stanković, J., Stanojević, B., Xenakis, A.,& Savić, S.. (2020). Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity. in Journal of Molecular Liquids Elsevier B.V.., 301. https://doi.org/10.1016/j.molliq.2020.112479
Nikolić I, Mitsou E, Damjanović A, Papadimitriou V, Antić-Stanković J, Stanojević B, Xenakis A, Savić S. Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity. in Journal of Molecular Liquids. 2020;301. doi:10.1016/j.molliq.2020.112479 .
Nikolić, Ines, Mitsou, Evgenia, Damjanović, Ana, Papadimitriou, Vassiliki, Antić-Stanković, Jelena, Stanojević, Boban, Xenakis, Aristotelis, Savić, Snežana, "Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity" in Journal of Molecular Liquids, 301 (2020), https://doi.org/10.1016/j.molliq.2020.112479 . .