Curcumin-loaded low-energy nanoemulsions: Linking EPR spectroscopy-analysed microstructure and antioxidant potential with in vitro evaluated biological activity
Samo za registrovane korisnike
2020
Autori
Nikolić, Ines
Mitsou, Evgenia

Damjanović, Ana

Papadimitriou, Vassiliki
Antić-Stanković, Jelena

Stanojević, Boban
Xenakis, Aristotelis

Savić, Snežana

Članak u časopisu (Objavljena verzija)

Metapodaci
Prikaz svih podataka o dokumentuApstrakt
The objective of this work was to investigate and profoundly characterize low-energy nanoemulsions as multifunctional carriers, with slight reference to dermal administration. An evidence-based approach was offered for deepening the knowledge on their formation via spontaneous emulsification. Curcumin, a compound of natural origin, potentially powerful therapeutic, was chosen as a model API. Due to curcumin's demanding properties (instability, poor solubility, low permeability), its potentials remain unreached. Low-energy nanoemulsions were considered carriers capable of overcoming imposed obstacles. Formulation consisting of Polysorbate 80 and soybean lecithin as stabilizers (9:1, 10%), medium-chain triglycerides as the oil phase (10%) and ultrapure water was selected for curcumin incorporation in 3 different concentrations (1, 2 and 3 mg/mL). Physicochemical stability was demonstrated during 3 months of monitoring (mean droplet size: 111.3-146.8 nm; PDI < 0.2; pH: 4.73-5.73). Curcumi...n's release from developed vehicles followed Higuchi's kinetics. DPPH (IC50 = 0.1187 mg/ mL) and FRAP (1.19 +/- 0.02 mmol/g) assays confirmed that curcumin acts as a potent antioxidant through different mechanisms, with no alterations after incorporation in the formulation. High biocompatibility in line with antigenotoxic activity of curcumin-loaded formulations (protective and reparative) was estimated through Comet assay. A multidisciplinary approach is needed to fully characterize developed systems, directing them to more concrete application possibilities.
Ključne reči:
Low-energy nanoemulsions / Spontaneous emulsification / Curcumin / Atomic force microscopy / Antioxidant activity / (Anti)genotoxicityIzvor:
Journal of Molecular Liquids, 2020, 301Izdavač:
- Elsevier B.V.
Projekti:
- Razvoj mikro- i nanosistema kao nosača za lekove sa antiinflamatornim delovanjem i metoda za njihovu karakterizaciju (RS-34031)
- Development of Micro- and Nanosystems as Carriers for Drugswith Anti-inflammatory Effect and Methods for Their Characterizationand OI 175011 Biological response modifiers in physiological and path-ological conditions.
DOI: 10.1016/j.molliq.2020.112479
ISSN: 0167-7322