Show simple item record

dc.creatorKrkobabić, Mirjana
dc.creatorMedarević, Djordje
dc.creatorCvijić, Sandra
dc.creatorGrujić, Branka
dc.creatorIbrić, Svetlana
dc.date.accessioned2020-03-02T13:10:07Z
dc.date.available2020-03-02T13:10:07Z
dc.date.issued2019
dc.identifier.issn0378-5173
dc.identifier.urihttp://farfar.pharmacy.bg.ac.rs/handle/123456789/3540
dc.description.abstractThree-dimensional (3D) printing enables the production of different objects adjusted for the specific application, which has particular importance of providing personalized therapy, whereby the challenge is to apply pharmaceutical materials into 3D printing technology. In this study, effect of poly(ethylene glycol) 400 (PEG 400), sodium chloride (NaCl), and mannitol, as hydrophilic excipients, was investigated in order to overcome very slow and incomplete drug release from tablets (printlets) fabricated by photopolymerization using digital light processing (DLP) technology. Paracetamol (acetaminophen) was used as a model drug, while polyethylene glycol diacrylate (PEGDA) was used as a photopolymer and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide as a photoinitiator in photoreactive mixtures. Most of printlet formulations exhibit sustained release over 8 h, wherein drug release kinetics is the best described with Korsmeyer-Peppas kinetics. Variation in the content of photopolymer and excipients had an influence on the dissolution rate, mechanical characteristics, and internal structure of the investigated samples. The addition of hydrophilic polymers increased drug release rate, while PEGDA had the greatest influence on the tensile strength of printlets. The results indicate the possibility of implementation of traditional excipients into different formulations for photopolymerization based 3D printing for the production of small batches of tablets with tailored drug release.
dc.publisherElsevier
dc.rightsrestrictedAccess
dc.sourceInternational Journal of Pharmaceutics
dc.subjectDigital Light Processing (DLP)
dc.subjectPhotopolymerization
dc.subjectSustained release
dc.subjectThree-dimensional (3D) printing
dc.titleHydrophilic excipients in digital light processing (DLP) printing of sustained release tablets: Impact on internal structure and drug dissolution rate
dc.typearticle
dc.rights.licenseARR
dcterms.abstractКркобабић, Мирјана; Цвијић, Сандра; Грујић, Бранка; Ибрић, Светлана; Медаревић, Дјордје;
dc.citation.volume572
dc.citation.rankM21
dc.identifier.wos000500308000048
dc.identifier.doi10.1016/j.ijpharm.2019.118790
dc.identifier.scopus2-s2.0-85075486961
dc.type.versionpublishedVersion


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record