Novel computational approaches to retention modeling in dual hydrophilic interactions/reversed phase chromatography
Само за регистроване кориснике
2020
Чланак у часопису (Објављена верзија)

Метаподаци
Приказ свих података о документуАпстракт
The mixed-mode chromatographic behavior was estimated for imidazoline and serotonin receptor ligands, and their related compounds on dual hydrophilic/reversed phase stationary phase. The Box-Cox transfor- mation was used to obtain the most suitable mathematical equations which describe the mixed-mode retention. Optimal equations were found for the optimization parameter ( λ): λ= -1, λ= -0.5, λ= 0, λ= 0.5, and λ= 1. The proposed equations show satisfactory characteristics compared to standard mul- timodal and quadratic approaches. For a wide range of volume fractions of the mobile phase modifier, crossing between hydrophilic and reversed phase interactions (the turning point) was defined in terms of the minimal retention and the minimum value of the volume fraction of the aqueous eluent in the mobile phase. The cubic spline inter- polation was used as a reference method for estimation of the turning point. It was found out that the newly proposed equations can be used as alternative mat...hematical forms for the description of the dual retention mechanism and for the evaluation of the turning point. Three new experimental descriptors of the mixed-mode retention were proposed. Two descriptors quan- titatively characterize hydrophilic (log k H ) and reversed phase (log k R ) interactions, while the third one (log k A ) refers to the average retention for the whole HILIC/RP range. It was established that the main fac- tors which control dual nature of the mixed-mode retention are lipophilicity, dipol-dipol, van der Waals and hydrogen bonding interactions. It was concluded that the newly proposed estimations of the retention data reliably characterize the mixed-mode chromatographic behavior.
Кључне речи:
Box-Cox transformation / Mixed-mode retention / Retention descriptors / Turning pointИзвор:
Journal of Chromatography A, 2020, 1619Издавач:
- Elsevier B.V.
Финансирање / пројекти:
DOI: 10.1016/j.chroma.2020.460951
ISSN: 0021-9673
WoS: 000530685300034
Scopus: 2-s2.0-85079809418
Институција/група
PharmacyTY - JOUR AU - Obradović, Darija AU - Komsta, Łukasz AU - Agbaba, Danica PY - 2020 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3558 AB - The mixed-mode chromatographic behavior was estimated for imidazoline and serotonin receptor ligands, and their related compounds on dual hydrophilic/reversed phase stationary phase. The Box-Cox transfor- mation was used to obtain the most suitable mathematical equations which describe the mixed-mode retention. Optimal equations were found for the optimization parameter ( λ): λ= -1, λ= -0.5, λ= 0, λ= 0.5, and λ= 1. The proposed equations show satisfactory characteristics compared to standard mul- timodal and quadratic approaches. For a wide range of volume fractions of the mobile phase modifier, crossing between hydrophilic and reversed phase interactions (the turning point) was defined in terms of the minimal retention and the minimum value of the volume fraction of the aqueous eluent in the mobile phase. The cubic spline inter- polation was used as a reference method for estimation of the turning point. It was found out that the newly proposed equations can be used as alternative mathematical forms for the description of the dual retention mechanism and for the evaluation of the turning point. Three new experimental descriptors of the mixed-mode retention were proposed. Two descriptors quan- titatively characterize hydrophilic (log k H ) and reversed phase (log k R ) interactions, while the third one (log k A ) refers to the average retention for the whole HILIC/RP range. It was established that the main fac- tors which control dual nature of the mixed-mode retention are lipophilicity, dipol-dipol, van der Waals and hydrogen bonding interactions. It was concluded that the newly proposed estimations of the retention data reliably characterize the mixed-mode chromatographic behavior. PB - Elsevier B.V. T2 - Journal of Chromatography A T1 - Novel computational approaches to retention modeling in dual hydrophilic interactions/reversed phase chromatography VL - 1619 DO - 10.1016/j.chroma.2020.460951 ER -
@article{ author = "Obradović, Darija and Komsta, Łukasz and Agbaba, Danica", year = "2020", abstract = "The mixed-mode chromatographic behavior was estimated for imidazoline and serotonin receptor ligands, and their related compounds on dual hydrophilic/reversed phase stationary phase. The Box-Cox transfor- mation was used to obtain the most suitable mathematical equations which describe the mixed-mode retention. Optimal equations were found for the optimization parameter ( λ): λ= -1, λ= -0.5, λ= 0, λ= 0.5, and λ= 1. The proposed equations show satisfactory characteristics compared to standard mul- timodal and quadratic approaches. For a wide range of volume fractions of the mobile phase modifier, crossing between hydrophilic and reversed phase interactions (the turning point) was defined in terms of the minimal retention and the minimum value of the volume fraction of the aqueous eluent in the mobile phase. The cubic spline inter- polation was used as a reference method for estimation of the turning point. It was found out that the newly proposed equations can be used as alternative mathematical forms for the description of the dual retention mechanism and for the evaluation of the turning point. Three new experimental descriptors of the mixed-mode retention were proposed. Two descriptors quan- titatively characterize hydrophilic (log k H ) and reversed phase (log k R ) interactions, while the third one (log k A ) refers to the average retention for the whole HILIC/RP range. It was established that the main fac- tors which control dual nature of the mixed-mode retention are lipophilicity, dipol-dipol, van der Waals and hydrogen bonding interactions. It was concluded that the newly proposed estimations of the retention data reliably characterize the mixed-mode chromatographic behavior.", publisher = "Elsevier B.V.", journal = "Journal of Chromatography A", title = "Novel computational approaches to retention modeling in dual hydrophilic interactions/reversed phase chromatography", volume = "1619", doi = "10.1016/j.chroma.2020.460951" }
Obradović, D., Komsta, Ł.,& Agbaba, D.. (2020). Novel computational approaches to retention modeling in dual hydrophilic interactions/reversed phase chromatography. in Journal of Chromatography A Elsevier B.V.., 1619. https://doi.org/10.1016/j.chroma.2020.460951
Obradović D, Komsta Ł, Agbaba D. Novel computational approaches to retention modeling in dual hydrophilic interactions/reversed phase chromatography. in Journal of Chromatography A. 2020;1619. doi:10.1016/j.chroma.2020.460951 .
Obradović, Darija, Komsta, Łukasz, Agbaba, Danica, "Novel computational approaches to retention modeling in dual hydrophilic interactions/reversed phase chromatography" in Journal of Chromatography A, 1619 (2020), https://doi.org/10.1016/j.chroma.2020.460951 . .