FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

EFFECT of colored noise on the generation of seismic fault MOVEMENT: Analogy with spring-block model DYNAMICS

Authorized Users Only
2020
Authors
Kostić, Srđan
Vasović, Nebojša
Todorović, Kristina
Franović, Igor
Article (Published version)
Metadata
Show full item record
Abstract
In present paper authors examined the effect of colored noise on the onset of seismic fault motion. For this purpose, they analyze the dynamics of spring-block model, with 10 all-to all coupled blocks. This spring-block model is considered as a collection of fault patches (with the increased rock friction), which are separated by the material bridges (more petrified parts of the fault). In the first phase of research, authors confirm the presence of autocorrelation in the background of seismic noise, using the measurement of real fault movement, and the recorded ground shaking before and after an earthquake. In the second stage of the research, authors firstly develop a mean-field model, which accurately enough describes the dynamics of a starting block model, with the introduced delayed interaction among the blocks, while colored noise is assumed to be generated by Ornstein-Uhlenbeck process. The results of the analysis indicate the existence of three different dynamical regimes, whic...h correspond to three regimes of fault motion: steady stationary state, aseismic creep and seismic fault motion. The effect of colored noise lies in the possibility of generating the seismic fault motion even for small values of correlation time. Moreover, it is shown that the tight connection between the blocks, i.e. fault patches prevent the occurrence of seismic fault motion.

Keywords:
Bifurcation / Correlated noise / Correspondence with real measurements / Regimes of fault motion dynamics
Source:
Chaos, Solitons and Fractals, 2020, 135
Publisher:
  • Elsevier
Funding / projects:
  • Modeling and Numerical Simulations of Complex Many-Body Systems (RS-171017)
  • Magmatism and geodynamics of the Balkan Peninsula from Mesozoic to present day: significance for the formation of metallic and non-metallic mineral deposits (RS-176016)

DOI: 10.1016/j.chaos.2020.109726

ISSN: 0960-0779

WoS: 000540074900011

Scopus: 2-s2.0-85084047072
[ Google Scholar ]
3
1
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/3582
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Kostić, Srđan
AU  - Vasović, Nebojša
AU  - Todorović, Kristina
AU  - Franović, Igor
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3582
AB  - In present paper authors examined the effect of colored noise on the onset of seismic fault motion. For this purpose, they analyze the dynamics of spring-block model, with 10 all-to all coupled blocks. This spring-block model is considered as a collection of fault patches (with the increased rock friction), which are separated by the material bridges (more petrified parts of the fault). In the first phase of research, authors confirm the presence of autocorrelation in the background of seismic noise, using the measurement of real fault movement, and the recorded ground shaking before and after an earthquake. In the second stage of the research, authors firstly develop a mean-field model, which accurately enough describes the dynamics of a starting block model, with the introduced delayed interaction among the blocks, while colored noise is assumed to be generated by Ornstein-Uhlenbeck process. The results of the analysis indicate the existence of three different dynamical regimes, which correspond to three regimes of fault motion: steady stationary state, aseismic creep and seismic fault motion. The effect of colored noise lies in the possibility of generating the seismic fault motion even for small values of correlation time. Moreover, it is shown that the tight connection between the blocks, i.e. fault patches prevent the occurrence of seismic fault motion.
PB  - Elsevier
T2  - Chaos, Solitons and Fractals
T1  - EFFECT of colored noise on the generation of seismic fault MOVEMENT: Analogy with spring-block model DYNAMICS
VL  - 135
DO  - 10.1016/j.chaos.2020.109726
ER  - 
@article{
author = "Kostić, Srđan and Vasović, Nebojša and Todorović, Kristina and Franović, Igor",
year = "2020",
abstract = "In present paper authors examined the effect of colored noise on the onset of seismic fault motion. For this purpose, they analyze the dynamics of spring-block model, with 10 all-to all coupled blocks. This spring-block model is considered as a collection of fault patches (with the increased rock friction), which are separated by the material bridges (more petrified parts of the fault). In the first phase of research, authors confirm the presence of autocorrelation in the background of seismic noise, using the measurement of real fault movement, and the recorded ground shaking before and after an earthquake. In the second stage of the research, authors firstly develop a mean-field model, which accurately enough describes the dynamics of a starting block model, with the introduced delayed interaction among the blocks, while colored noise is assumed to be generated by Ornstein-Uhlenbeck process. The results of the analysis indicate the existence of three different dynamical regimes, which correspond to three regimes of fault motion: steady stationary state, aseismic creep and seismic fault motion. The effect of colored noise lies in the possibility of generating the seismic fault motion even for small values of correlation time. Moreover, it is shown that the tight connection between the blocks, i.e. fault patches prevent the occurrence of seismic fault motion.",
publisher = "Elsevier",
journal = "Chaos, Solitons and Fractals",
title = "EFFECT of colored noise on the generation of seismic fault MOVEMENT: Analogy with spring-block model DYNAMICS",
volume = "135",
doi = "10.1016/j.chaos.2020.109726"
}
Kostić, S., Vasović, N., Todorović, K.,& Franović, I.. (2020). EFFECT of colored noise on the generation of seismic fault MOVEMENT: Analogy with spring-block model DYNAMICS. in Chaos, Solitons and Fractals
Elsevier., 135.
https://doi.org/10.1016/j.chaos.2020.109726
Kostić S, Vasović N, Todorović K, Franović I. EFFECT of colored noise on the generation of seismic fault MOVEMENT: Analogy with spring-block model DYNAMICS. in Chaos, Solitons and Fractals. 2020;135.
doi:10.1016/j.chaos.2020.109726 .
Kostić, Srđan, Vasović, Nebojša, Todorović, Kristina, Franović, Igor, "EFFECT of colored noise on the generation of seismic fault MOVEMENT: Analogy with spring-block model DYNAMICS" in Chaos, Solitons and Fractals, 135 (2020),
https://doi.org/10.1016/j.chaos.2020.109726 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB