FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Double active BEA zeolite/silver tungstophosphates – Antimicrobial effects and pesticide removal

Authorized Users Only
2020
Authors
Janićijević, Dejana
Uskoković-Marković, Snežana
Ranković, Dragan
Milenković, Marina
Jevremović, Anka
Nedić-Vasiljević, Bojana
Milojević-Rakić, Maja
Bajuk-Bogdanović, Danica
Article (Published version)
Metadata
Show full item record
Abstract
Novel composites of BEA zeolite and silver tungstophosphate were prepared by different procedures: two-step impregnation, ion-exchange, and as physical mixtures with varying component mass ratios. Composites were characterized using Atomic force microscopy, Infrared, Raman and Atomic absorption spectroscopy, and results were related to adsorption properties and antimicrobial efficiencies of the composites. Prepared samples were tested as antimicrobial agents for fungal and different bacterial strains, as well as for adsorbents for pesticide nicosulfuron in aqueous solutions by using High-performance liquid chromatography. Experimental conditions for batch adsorption testing were optimized in order to efficiently eliminate nicosulfuron from aqueous solutions, while enabling antimicrobial activity of these advanced materials. Antimicrobial efficiency of composites was verified, and indicated that silver ion persistence in the solid phase is of utmost significance for the antimicrobial ac...tivity. Spectroscopic investigation revealed interaction of the silver tungstophosphate active phase and the zeolite framework, giving evidence of uniform distribution of active sites in the synthesized materials that proved to be essential for adsorption application. The best obtained adsorption capacity, as well as highest antimicrobial efficiency, is found for composite samples prepared by two-step impregnation with (BEA: silver tungstophosphate) mass ratio 2:1. The amount of nicosulfuron removed from water suspension was 38.2 mg per gram of composite, and the minimum inhibitory concentration determined for all investigated gram-negative bacteria was 125 μg mL−1.

Keywords:
Adsorption / FTIR / Ion-exchange / Nicosulfuron / Raman spectroscopy / Two-step impregnation
Source:
Science of the Total Environment, 2020, 735
Publisher:
  • Elsevier
Projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200146 (University of Belgrade, Faculty of Physical Chemistry) (RS-200146)

DOI: 10.1016/j.scitotenv.2020.139530

ISSN: 0048-9697

WoS: 000542562600013

Scopus: 2-s2.0-85085236820
[ Google Scholar ]
1
1
URI
http://farfar.pharmacy.bg.ac.rs/handle/123456789/3587
Collections
  • Radovi istraživača / Researchers’ publications
Institution
Pharmacy

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB