FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cadmium sulfide-induced toxicity in the cortex and cerebellum: In vitro and in vivo studies

Thumbnail
2020
Cadmium_sulfide-induced_toxicity_pub_2020.pdf (21.01Mb)
Authors
Varmazyari, Atefeh
Taghizadehghalehjoughi, Ali
Sevim, Cigdem
Baris, Ozlem
Eser, Gizem
Yildirim, Serkan
Hacimuftuoglu, Ahmet
Buha, Aleksandra
Wallace, David R.
Tsatsakis, Aristidis
Aschner, Michael
Mezhuev, Yaroslav
Article (Published version)
Metadata
Show full item record
Abstract
Living organisms have an innate ability to regulate the synthesis of inorganic materials, such as bones and teeth in humans. Cadmium sulfide (CdS) can be utilized as a quantum dot that functions as a unique light-emitting semiconductor nanocrystal. The increased use in CdS has led to an increased inhalation and ingestion rate of CdS by humans which requires a broader appreciation for the acute and chronic toxicity of CdS. We investigated the toxic effects of CdS on cerebellar cell cultures and rat brain. We employed a ‘green synthesis’ biosynthesis process to obtain biocompatible material that can be used in living organisms, such as Viridibacillus arenosi K64. Nanocrystal formation was initiated by adding CdCl2 (1 mM) to the cell cultures. Our in vitro results established that increased concentrations of CdS (0.1 μg/mL) lead to decreased cell viability as assessed using 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT), total antioxidant capacity (TAC), and total oxi...dant status (TOS). The in vivo studies showed that exposure to CdS (1 mg/kg) glial fibrillary acidic protein (GFAP) and 8-hydroxy-2' -deoxyguanosine (8-OHdG) were increased. Collectively, we describe a model system that addresses the process from the synthesis to the neurotoxicity assessment for CdS both in vitro and in vivo. These data will be beneficial in establishing a more comprehensive pathway for the understanding of quantum dot-induced neurotoxicity.

Keywords:
CdS / Cerebellum neuron / Green synthesis / Neurotoxicity / Quantum dots
Source:
Toxicology Reports, 2020, 7, 637-648
Publisher:
  • Elsevier
Funding / projects:
  • NIEHSR01ES07331
  • R01ES10563
  • Oklahoma State University grant #154357

DOI: 10.1016/j.toxrep.2020.04.011

ISSN: 2214-7500

WoS: 000604358700004

Scopus: 2-s2.0-85085285759
[ Google Scholar ]
25
13
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/3593
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Varmazyari, Atefeh
AU  - Taghizadehghalehjoughi, Ali
AU  - Sevim, Cigdem
AU  - Baris, Ozlem
AU  - Eser, Gizem
AU  - Yildirim, Serkan
AU  - Hacimuftuoglu, Ahmet
AU  - Buha, Aleksandra
AU  - Wallace, David R.
AU  - Tsatsakis, Aristidis
AU  - Aschner, Michael
AU  - Mezhuev, Yaroslav
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3593
AB  - Living organisms have an innate ability to regulate the synthesis of inorganic materials, such as bones and teeth in humans. Cadmium sulfide (CdS) can be utilized as a quantum dot that functions as a unique light-emitting semiconductor nanocrystal. The increased use in CdS has led to an increased inhalation and ingestion rate of CdS by humans which requires a broader appreciation for the acute and chronic toxicity of CdS. We investigated the toxic effects of CdS on cerebellar cell cultures and rat brain. We employed a ‘green synthesis’ biosynthesis process to obtain biocompatible material that can be used in living organisms, such as Viridibacillus arenosi K64. Nanocrystal formation was initiated by adding CdCl2 (1 mM) to the cell cultures. Our in vitro results established that increased concentrations of CdS (0.1 μg/mL) lead to decreased cell viability as assessed using 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT), total antioxidant capacity (TAC), and total oxidant status (TOS). The in vivo studies showed that exposure to CdS (1 mg/kg) glial fibrillary acidic protein (GFAP) and 8-hydroxy-2' -deoxyguanosine (8-OHdG) were increased. Collectively, we describe a model system that addresses the process from the synthesis to the neurotoxicity assessment for CdS both in vitro and in vivo. These data will be beneficial in establishing a more comprehensive pathway for the understanding of quantum dot-induced neurotoxicity.
PB  - Elsevier
T2  - Toxicology Reports
T1  - Cadmium sulfide-induced toxicity in the cortex and cerebellum: In vitro and in vivo studies
VL  - 7
SP  - 637
EP  - 648
DO  - 10.1016/j.toxrep.2020.04.011
ER  - 
@article{
author = "Varmazyari, Atefeh and Taghizadehghalehjoughi, Ali and Sevim, Cigdem and Baris, Ozlem and Eser, Gizem and Yildirim, Serkan and Hacimuftuoglu, Ahmet and Buha, Aleksandra and Wallace, David R. and Tsatsakis, Aristidis and Aschner, Michael and Mezhuev, Yaroslav",
year = "2020",
abstract = "Living organisms have an innate ability to regulate the synthesis of inorganic materials, such as bones and teeth in humans. Cadmium sulfide (CdS) can be utilized as a quantum dot that functions as a unique light-emitting semiconductor nanocrystal. The increased use in CdS has led to an increased inhalation and ingestion rate of CdS by humans which requires a broader appreciation for the acute and chronic toxicity of CdS. We investigated the toxic effects of CdS on cerebellar cell cultures and rat brain. We employed a ‘green synthesis’ biosynthesis process to obtain biocompatible material that can be used in living organisms, such as Viridibacillus arenosi K64. Nanocrystal formation was initiated by adding CdCl2 (1 mM) to the cell cultures. Our in vitro results established that increased concentrations of CdS (0.1 μg/mL) lead to decreased cell viability as assessed using 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT), total antioxidant capacity (TAC), and total oxidant status (TOS). The in vivo studies showed that exposure to CdS (1 mg/kg) glial fibrillary acidic protein (GFAP) and 8-hydroxy-2' -deoxyguanosine (8-OHdG) were increased. Collectively, we describe a model system that addresses the process from the synthesis to the neurotoxicity assessment for CdS both in vitro and in vivo. These data will be beneficial in establishing a more comprehensive pathway for the understanding of quantum dot-induced neurotoxicity.",
publisher = "Elsevier",
journal = "Toxicology Reports",
title = "Cadmium sulfide-induced toxicity in the cortex and cerebellum: In vitro and in vivo studies",
volume = "7",
pages = "637-648",
doi = "10.1016/j.toxrep.2020.04.011"
}
Varmazyari, A., Taghizadehghalehjoughi, A., Sevim, C., Baris, O., Eser, G., Yildirim, S., Hacimuftuoglu, A., Buha, A., Wallace, D. R., Tsatsakis, A., Aschner, M.,& Mezhuev, Y.. (2020). Cadmium sulfide-induced toxicity in the cortex and cerebellum: In vitro and in vivo studies. in Toxicology Reports
Elsevier., 7, 637-648.
https://doi.org/10.1016/j.toxrep.2020.04.011
Varmazyari A, Taghizadehghalehjoughi A, Sevim C, Baris O, Eser G, Yildirim S, Hacimuftuoglu A, Buha A, Wallace DR, Tsatsakis A, Aschner M, Mezhuev Y. Cadmium sulfide-induced toxicity in the cortex and cerebellum: In vitro and in vivo studies. in Toxicology Reports. 2020;7:637-648.
doi:10.1016/j.toxrep.2020.04.011 .
Varmazyari, Atefeh, Taghizadehghalehjoughi, Ali, Sevim, Cigdem, Baris, Ozlem, Eser, Gizem, Yildirim, Serkan, Hacimuftuoglu, Ahmet, Buha, Aleksandra, Wallace, David R., Tsatsakis, Aristidis, Aschner, Michael, Mezhuev, Yaroslav, "Cadmium sulfide-induced toxicity in the cortex and cerebellum: In vitro and in vivo studies" in Toxicology Reports, 7 (2020):637-648,
https://doi.org/10.1016/j.toxrep.2020.04.011 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB