rcub.pharmacy.logo
rcub.pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   IBISS RADaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   IBISS RADaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deciphering Imidazoline Off-targets by Fishing in the Class A of GPCR field

rcub.bitstream.locked
2020
Authors
Đikić, Teodora
Vučićević, Jelica
Laurila, Jonne
Radi, Marco
Veljković, Nevena
Xhaard, Henri
Nikolić, Katarina
Article (Published version)
Metadata
Show full item record
Abstract
Based on the finding that a central antihypertensive agent with high affinity for I1-type imidazoline receptors – rilmenidine, shows cytotoxic effects on cultured cancer cell lines, it has been suggested that imidazoline receptors agonists might have a therapeutic potential in the cancer therapy. Nevertheless, potential rilmenidine side effects caused by activation of α-adrenoceptors, or other associated receptors and enzymes, might hinder its therapeutic benefits. Considering that human α-adrenoceptors belong to the rhodopsin-like class A of G-protein-coupled receptors (GPCRs) it is reasonable to assume that imidazolines might have the affinity for other receptors from the same class. Therefore, to investigate possible off-target effects of imidazoline ligands we have prepared a reverse docking protocol on class A GPCRs, using imidazoline ligands and their decoys. To verify our in silico results, three ligands with high scores and three ligands with low scores were tested for antagoni...stic activity on α2- adrenoceptors.

Keywords:
GPCRs / imidazolines / off-target / reverse docking / target fishing
Source:
Molecular Informatics, 2020, 39, 7
Publisher:
  • Wiley-VCH Verlag
Funding / projects:
  • Synthesis, Quantitative Structure and Activity Relationship, Physico-Chemical Characterisation and Analysis of Pharmacologically Active Substances (RS-172033)
  • Application of the EIIP/ISM bioinformatics platform in discovery of novel therapeutic targets and potential therapeutic molecules (RS-173001)

DOI: 10.1002/minf.201900165

ISSN: 1868-1743

WoS: 000547000100002

Scopus: 2-s2.0-85081654976
[ Google Scholar ]
1
1
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/3639
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Đikić, Teodora
AU  - Vučićević, Jelica
AU  - Laurila, Jonne
AU  - Radi, Marco
AU  - Veljković, Nevena
AU  - Xhaard, Henri
AU  - Nikolić, Katarina
PY  - 2020
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3639
AB  - Based on the finding that a central antihypertensive agent with high affinity for I1-type imidazoline receptors – rilmenidine, shows cytotoxic effects on cultured cancer cell lines, it has been suggested that imidazoline receptors agonists might have a therapeutic potential in the cancer therapy. Nevertheless, potential rilmenidine side effects caused by activation of α-adrenoceptors, or other associated receptors and enzymes, might hinder its therapeutic benefits. Considering that human α-adrenoceptors belong to the rhodopsin-like class A of G-protein-coupled receptors (GPCRs) it is reasonable to assume that imidazolines might have the affinity for other receptors from the same class. Therefore, to investigate possible off-target effects of imidazoline ligands we have prepared a reverse docking protocol on class A GPCRs, using imidazoline ligands and their decoys. To verify our in silico results, three ligands with high scores and three ligands with low scores were tested for antagonistic activity on α2- adrenoceptors.
PB  - Wiley-VCH Verlag
T2  - Molecular Informatics
T1  - Deciphering Imidazoline Off-targets by Fishing in the Class A of GPCR field
VL  - 39
IS  - 7
DO  - 10.1002/minf.201900165
ER  - 
@article{
author = "Đikić, Teodora and Vučićević, Jelica and Laurila, Jonne and Radi, Marco and Veljković, Nevena and Xhaard, Henri and Nikolić, Katarina",
year = "2020",
abstract = "Based on the finding that a central antihypertensive agent with high affinity for I1-type imidazoline receptors – rilmenidine, shows cytotoxic effects on cultured cancer cell lines, it has been suggested that imidazoline receptors agonists might have a therapeutic potential in the cancer therapy. Nevertheless, potential rilmenidine side effects caused by activation of α-adrenoceptors, or other associated receptors and enzymes, might hinder its therapeutic benefits. Considering that human α-adrenoceptors belong to the rhodopsin-like class A of G-protein-coupled receptors (GPCRs) it is reasonable to assume that imidazolines might have the affinity for other receptors from the same class. Therefore, to investigate possible off-target effects of imidazoline ligands we have prepared a reverse docking protocol on class A GPCRs, using imidazoline ligands and their decoys. To verify our in silico results, three ligands with high scores and three ligands with low scores were tested for antagonistic activity on α2- adrenoceptors.",
publisher = "Wiley-VCH Verlag",
journal = "Molecular Informatics",
title = "Deciphering Imidazoline Off-targets by Fishing in the Class A of GPCR field",
volume = "39",
number = "7",
doi = "10.1002/minf.201900165"
}
Đikić, T., Vučićević, J., Laurila, J., Radi, M., Veljković, N., Xhaard, H.,& Nikolić, K.. (2020). Deciphering Imidazoline Off-targets by Fishing in the Class A of GPCR field. in Molecular Informatics
Wiley-VCH Verlag., 39(7).
https://doi.org/10.1002/minf.201900165
Đikić T, Vučićević J, Laurila J, Radi M, Veljković N, Xhaard H, Nikolić K. Deciphering Imidazoline Off-targets by Fishing in the Class A of GPCR field. in Molecular Informatics. 2020;39(7).
doi:10.1002/minf.201900165 .
Đikić, Teodora, Vučićević, Jelica, Laurila, Jonne, Radi, Marco, Veljković, Nevena, Xhaard, Henri, Nikolić, Katarina, "Deciphering Imidazoline Off-targets by Fishing in the Class A of GPCR field" in Molecular Informatics, 39, no. 7 (2020),
https://doi.org/10.1002/minf.201900165 . .

DSpace software copyright © 2002-2015  DuraSpace
About the RADaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCollectionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the RADaR Repository | Send Feedback

OpenAIRERCUB