FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Paracetamol extended release FDM 3D printlets: Evaluation of formulation variables on printability and drug release

Authorized Users Only
2021
Authors
Đuranović, Marija
Obeid, Samiha
Madžarević, Marijana
Cvijić, Sandra
Ibrić, Svetlana
Article (Published version)
Metadata
Show full item record
Abstract
Paracetamol printlets were prepared via hot-melt extrusion process and fused deposition modelling, using two types of backbone polymers. Polycaprolactone (PCL) and Polyethylene oxides (PEO) 100 K and 200 K were used, while Arabic gum was used as a plasticizer to facilitate the material flow and Gelucire® 44/14 as an enhancer of drug release. Different drug/polymer ratios were prepared. Extrusion temperature was adjusted according to the mixture/polymer types. It was possible to produce filaments with maximum of 60% w/w of drug. Mechanical properties of filaments were evaluated using three-point bend test, while obtained parameters were modelled using decision tree as a data mining method. Correlation between maximum displacement, maximum force and printability was obtained with accuracy of 84.85% and can be a useful tool for predicting printability of filaments. This study briefly demonstrated that backbone polymer in formulation plays crucial role in obtaining FDM printlets with desir...ed properties. PEO-based filaments were more prone to be clogged in printcore, but their printlets showed much faster drug release. Drug release from all printlets was prolonged: from 50% in 8 h (PCL), to complete release in 4 h (PEO). Paracetamol release kinetics was guided by anomalous transport, attributed to the diffusion and erosion process.

Keywords:
3D printing / Decision tree model / Extended release / Fused deposition modelling / Printability / Three-point bend test
Source:
International Journal of Pharmaceutics, 2021, 592
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200161 (University of Belgrade, Faculty of Pharmacy) (RS-200161)

DOI: 10.1016/j.ijpharm.2020.120053

ISSN: 0378-5173

WoS: 000600740100035

Scopus: 2-s2.0-85096158696
[ Google Scholar ]
23
12
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/3775
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Đuranović, Marija
AU  - Obeid, Samiha
AU  - Madžarević, Marijana
AU  - Cvijić, Sandra
AU  - Ibrić, Svetlana
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/3775
AB  - Paracetamol printlets were prepared via hot-melt extrusion process and fused deposition modelling, using two types of backbone polymers. Polycaprolactone (PCL) and Polyethylene oxides (PEO) 100 K and 200 K were used, while Arabic gum was used as a plasticizer to facilitate the material flow and Gelucire® 44/14 as an enhancer of drug release. Different drug/polymer ratios were prepared. Extrusion temperature was adjusted according to the mixture/polymer types. It was possible to produce filaments with maximum of 60% w/w of drug. Mechanical properties of filaments were evaluated using three-point bend test, while obtained parameters were modelled using decision tree as a data mining method. Correlation between maximum displacement, maximum force and printability was obtained with accuracy of 84.85% and can be a useful tool for predicting printability of filaments. This study briefly demonstrated that backbone polymer in formulation plays crucial role in obtaining FDM printlets with desired properties. PEO-based filaments were more prone to be clogged in printcore, but their printlets showed much faster drug release. Drug release from all printlets was prolonged: from 50% in 8 h (PCL), to complete release in 4 h (PEO). Paracetamol release kinetics was guided by anomalous transport, attributed to the diffusion and erosion process.
T2  - International Journal of Pharmaceutics
T1  - Paracetamol extended release FDM 3D printlets: Evaluation of formulation variables on printability and drug release
VL  - 592
DO  - 10.1016/j.ijpharm.2020.120053
ER  - 
@article{
author = "Đuranović, Marija and Obeid, Samiha and Madžarević, Marijana and Cvijić, Sandra and Ibrić, Svetlana",
year = "2021",
abstract = "Paracetamol printlets were prepared via hot-melt extrusion process and fused deposition modelling, using two types of backbone polymers. Polycaprolactone (PCL) and Polyethylene oxides (PEO) 100 K and 200 K were used, while Arabic gum was used as a plasticizer to facilitate the material flow and Gelucire® 44/14 as an enhancer of drug release. Different drug/polymer ratios were prepared. Extrusion temperature was adjusted according to the mixture/polymer types. It was possible to produce filaments with maximum of 60% w/w of drug. Mechanical properties of filaments were evaluated using three-point bend test, while obtained parameters were modelled using decision tree as a data mining method. Correlation between maximum displacement, maximum force and printability was obtained with accuracy of 84.85% and can be a useful tool for predicting printability of filaments. This study briefly demonstrated that backbone polymer in formulation plays crucial role in obtaining FDM printlets with desired properties. PEO-based filaments were more prone to be clogged in printcore, but their printlets showed much faster drug release. Drug release from all printlets was prolonged: from 50% in 8 h (PCL), to complete release in 4 h (PEO). Paracetamol release kinetics was guided by anomalous transport, attributed to the diffusion and erosion process.",
journal = "International Journal of Pharmaceutics",
title = "Paracetamol extended release FDM 3D printlets: Evaluation of formulation variables on printability and drug release",
volume = "592",
doi = "10.1016/j.ijpharm.2020.120053"
}
Đuranović, M., Obeid, S., Madžarević, M., Cvijić, S.,& Ibrić, S.. (2021). Paracetamol extended release FDM 3D printlets: Evaluation of formulation variables on printability and drug release. in International Journal of Pharmaceutics, 592.
https://doi.org/10.1016/j.ijpharm.2020.120053
Đuranović M, Obeid S, Madžarević M, Cvijić S, Ibrić S. Paracetamol extended release FDM 3D printlets: Evaluation of formulation variables on printability and drug release. in International Journal of Pharmaceutics. 2021;592.
doi:10.1016/j.ijpharm.2020.120053 .
Đuranović, Marija, Obeid, Samiha, Madžarević, Marijana, Cvijić, Sandra, Ibrić, Svetlana, "Paracetamol extended release FDM 3D printlets: Evaluation of formulation variables on printability and drug release" in International Journal of Pharmaceutics, 592 (2021),
https://doi.org/10.1016/j.ijpharm.2020.120053 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB