Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders
Authorized Users Only
2022
Authors
Ćirin-Varađan, SlobodankaĐuriš, Jelena

Mirković, Miljana
Ivanović, Marija
Parojčić, Jelena

Aleksić, Ivana

Article (Published version)

Metadata
Show full item recordAbstract
The introduction of the high-speed tableting machines and the lack of excipients with good flow and compaction properties required for direct compression process have increased research interest in the development of coprocessed excipients. Melt granulation, as an environmentally friendly and cost-effective method, has recently been recognized as a promising co-processing technique. The aim of the present study was to prepare lipid-based co-processed excipients by in situ fluidized bed melt granulation and to investigated their suitability for direct compression process. Lactose monohydrate was co-processed with glyceryl dibehenate (Compritol® 888 ATO) or glyceryl palmitostearate (Precirol® ATO 5), as lipophilic meltable binders. Besides the flowability testing, dynamic compaction analysis was applied for thorough investigation into the tableting properties of developed coprocessed excipients. Solid state characterization, performed by means of XRPD and DRIFT, confirmed the absence of ...chemical changes of the single components of co-processed excipients. Co-processed excipients showed improved flowability in comparison with single ingredients and corresponding physical mixtures. Novel co-processed excipients were found to have better tabletability profiles than physical mixtures of the ingredients, and were able to retain acceptable tensile strength values at high content of paracetamol in tableting mixture. Tablets with high tensile strength could be obtained with less work of compression needed in comparison with the commercial lactose-based excipients. Furthermore, novel lipid-based co-processed excipients were found to be highly superior regarding the antiadhesive and lubricating properties, with no additional lubricants required.
Keywords:
Compritol® 888 ATO / Fluid bed / Melt granulation / Novel co-processed excipient / Precirol® ATO 5Source:
Journal of Drug Delivery Science and Technology, 2022, 67Publisher:
- Elsevier B.V.
Funding / projects:
DOI: 10.1016/j.jddst.2021.102981
ISSN: 1773-2247
WoS: 00078809020000
Scopus: 2-s2.0-85119904365
Collections
Institution/Community
PharmacyTY - JOUR AU - Ćirin-Varađan, Slobodanka AU - Đuriš, Jelena AU - Mirković, Miljana AU - Ivanović, Marija AU - Parojčić, Jelena AU - Aleksić, Ivana PY - 2022 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4001 AB - The introduction of the high-speed tableting machines and the lack of excipients with good flow and compaction properties required for direct compression process have increased research interest in the development of coprocessed excipients. Melt granulation, as an environmentally friendly and cost-effective method, has recently been recognized as a promising co-processing technique. The aim of the present study was to prepare lipid-based co-processed excipients by in situ fluidized bed melt granulation and to investigated their suitability for direct compression process. Lactose monohydrate was co-processed with glyceryl dibehenate (Compritol® 888 ATO) or glyceryl palmitostearate (Precirol® ATO 5), as lipophilic meltable binders. Besides the flowability testing, dynamic compaction analysis was applied for thorough investigation into the tableting properties of developed coprocessed excipients. Solid state characterization, performed by means of XRPD and DRIFT, confirmed the absence of chemical changes of the single components of co-processed excipients. Co-processed excipients showed improved flowability in comparison with single ingredients and corresponding physical mixtures. Novel co-processed excipients were found to have better tabletability profiles than physical mixtures of the ingredients, and were able to retain acceptable tensile strength values at high content of paracetamol in tableting mixture. Tablets with high tensile strength could be obtained with less work of compression needed in comparison with the commercial lactose-based excipients. Furthermore, novel lipid-based co-processed excipients were found to be highly superior regarding the antiadhesive and lubricating properties, with no additional lubricants required. PB - Elsevier B.V. T2 - Journal of Drug Delivery Science and Technology T1 - Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders VL - 67 DO - 10.1016/j.jddst.2021.102981 ER -
@article{ author = "Ćirin-Varađan, Slobodanka and Đuriš, Jelena and Mirković, Miljana and Ivanović, Marija and Parojčić, Jelena and Aleksić, Ivana", year = "2022", abstract = "The introduction of the high-speed tableting machines and the lack of excipients with good flow and compaction properties required for direct compression process have increased research interest in the development of coprocessed excipients. Melt granulation, as an environmentally friendly and cost-effective method, has recently been recognized as a promising co-processing technique. The aim of the present study was to prepare lipid-based co-processed excipients by in situ fluidized bed melt granulation and to investigated their suitability for direct compression process. Lactose monohydrate was co-processed with glyceryl dibehenate (Compritol® 888 ATO) or glyceryl palmitostearate (Precirol® ATO 5), as lipophilic meltable binders. Besides the flowability testing, dynamic compaction analysis was applied for thorough investigation into the tableting properties of developed coprocessed excipients. Solid state characterization, performed by means of XRPD and DRIFT, confirmed the absence of chemical changes of the single components of co-processed excipients. Co-processed excipients showed improved flowability in comparison with single ingredients and corresponding physical mixtures. Novel co-processed excipients were found to have better tabletability profiles than physical mixtures of the ingredients, and were able to retain acceptable tensile strength values at high content of paracetamol in tableting mixture. Tablets with high tensile strength could be obtained with less work of compression needed in comparison with the commercial lactose-based excipients. Furthermore, novel lipid-based co-processed excipients were found to be highly superior regarding the antiadhesive and lubricating properties, with no additional lubricants required.", publisher = "Elsevier B.V.", journal = "Journal of Drug Delivery Science and Technology", title = "Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders", volume = "67", doi = "10.1016/j.jddst.2021.102981" }
Ćirin-Varađan, S., Đuriš, J., Mirković, M., Ivanović, M., Parojčić, J.,& Aleksić, I.. (2022). Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders. in Journal of Drug Delivery Science and Technology Elsevier B.V.., 67. https://doi.org/10.1016/j.jddst.2021.102981
Ćirin-Varađan S, Đuriš J, Mirković M, Ivanović M, Parojčić J, Aleksić I. Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders. in Journal of Drug Delivery Science and Technology. 2022;67. doi:10.1016/j.jddst.2021.102981 .
Ćirin-Varađan, Slobodanka, Đuriš, Jelena, Mirković, Miljana, Ivanović, Marija, Parojčić, Jelena, Aleksić, Ivana, "Comparative evaluation of mechanical properties of lactose-based excipients co-processed with lipophilic glycerides as meltable binders" in Journal of Drug Delivery Science and Technology, 67 (2022), https://doi.org/10.1016/j.jddst.2021.102981 . .