FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

3d printed buccal films for prolonged-release of propranolol hydrochloride: Development, characterization and bioavailability prediction

Thumbnail
2021
3D_Printed_Buccal_pub_2021.pdf (3.949Mb)
Authors
Jovanović, Marija
Petrović, Miloš
Cvijić, Sandra
Tomić, Nataša
Stojanović, Dušica
Ibrić, Svetlana
Uskoković, Petar
Article (Published version)
Metadata
Show full item record
Abstract
Gelatin-polyvinylpyrrolidone (PVP) and gelatin-poly(vinyl alcohol) (PVA) mucoadhesive buccal films loaded with propranolol hydrochloride (PRH) were prepared by semi-solid extrusion 3D printing. The aim of this study was to evaluate the effects of the synthetic polymers PVP and PVA on thermal and mechanical properties and drug release profiles of gelatin-based films. The Fourier-transform infrared spectroscopy showed that hydrogen bonding between gelatin and PVP formed during printing. In the other blend, neither the esterification of PVA nor gelatin occurred. Differential scanning calorimetry revealed the presence of partial helical structures. In line with these results, the mechanical properties and drug release profiles were different for each blend. Formulation with gelatin-PVP and PRH showed higher tensile strength, hardness, and adhesive strength but slower drug release than formulation with gelatin-PVA and PRH. The in silico population simulations indicated increased drug bioava...ilability and decreased inter-individual variations in the resulting pharmacokinetic profiles compared to immediate-release tablets. Moreover, the simulation results suggested that reduced PRH daily dosing can be achieved with prolonged-release buccal films, which improves patient compliance.

Keywords:
Buccal films / Gelatin / Propranolol hydrochloride / 3D printing / Physiologically based simulations / Prolonged-release / Semi-solid extrusion
Source:
Pharmaceutics, 2021, 13, 12
Publisher:
  • MDPI
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200161 (University of Belgrade, Faculty of Pharmacy) (RS-200161)

DOI: 10.3390/pharmaceutics13122143

ISSN: 1999-4923

WoS: 000736279500001

Scopus: 2-s2.0-85121423156
[ Google Scholar ]
7
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/4016
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Jovanović, Marija
AU  - Petrović, Miloš
AU  - Cvijić, Sandra
AU  - Tomić, Nataša
AU  - Stojanović, Dušica
AU  - Ibrić, Svetlana
AU  - Uskoković, Petar
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4016
AB  - Gelatin-polyvinylpyrrolidone (PVP) and gelatin-poly(vinyl alcohol) (PVA) mucoadhesive buccal films loaded with propranolol hydrochloride (PRH) were prepared by semi-solid extrusion 3D printing. The aim of this study was to evaluate the effects of the synthetic polymers PVP and PVA on thermal and mechanical properties and drug release profiles of gelatin-based films. The Fourier-transform infrared spectroscopy showed that hydrogen bonding between gelatin and PVP formed during printing. In the other blend, neither the esterification of PVA nor gelatin occurred. Differential scanning calorimetry revealed the presence of partial helical structures. In line with these results, the mechanical properties and drug release profiles were different for each blend. Formulation with gelatin-PVP and PRH showed higher tensile strength, hardness, and adhesive strength but slower drug release than formulation with gelatin-PVA and PRH. The in silico population simulations indicated increased drug bioavailability and decreased inter-individual variations in the resulting pharmacokinetic profiles compared to immediate-release tablets. Moreover, the simulation results suggested that reduced PRH daily dosing can be achieved with prolonged-release buccal films, which improves patient compliance.
PB  - MDPI
T2  - Pharmaceutics
T1  - 3d printed buccal films for prolonged-release of propranolol hydrochloride: Development, characterization and bioavailability prediction
VL  - 13
IS  - 12
DO  - 10.3390/pharmaceutics13122143
ER  - 
@article{
author = "Jovanović, Marija and Petrović, Miloš and Cvijić, Sandra and Tomić, Nataša and Stojanović, Dušica and Ibrić, Svetlana and Uskoković, Petar",
year = "2021",
abstract = "Gelatin-polyvinylpyrrolidone (PVP) and gelatin-poly(vinyl alcohol) (PVA) mucoadhesive buccal films loaded with propranolol hydrochloride (PRH) were prepared by semi-solid extrusion 3D printing. The aim of this study was to evaluate the effects of the synthetic polymers PVP and PVA on thermal and mechanical properties and drug release profiles of gelatin-based films. The Fourier-transform infrared spectroscopy showed that hydrogen bonding between gelatin and PVP formed during printing. In the other blend, neither the esterification of PVA nor gelatin occurred. Differential scanning calorimetry revealed the presence of partial helical structures. In line with these results, the mechanical properties and drug release profiles were different for each blend. Formulation with gelatin-PVP and PRH showed higher tensile strength, hardness, and adhesive strength but slower drug release than formulation with gelatin-PVA and PRH. The in silico population simulations indicated increased drug bioavailability and decreased inter-individual variations in the resulting pharmacokinetic profiles compared to immediate-release tablets. Moreover, the simulation results suggested that reduced PRH daily dosing can be achieved with prolonged-release buccal films, which improves patient compliance.",
publisher = "MDPI",
journal = "Pharmaceutics",
title = "3d printed buccal films for prolonged-release of propranolol hydrochloride: Development, characterization and bioavailability prediction",
volume = "13",
number = "12",
doi = "10.3390/pharmaceutics13122143"
}
Jovanović, M., Petrović, M., Cvijić, S., Tomić, N., Stojanović, D., Ibrić, S.,& Uskoković, P.. (2021). 3d printed buccal films for prolonged-release of propranolol hydrochloride: Development, characterization and bioavailability prediction. in Pharmaceutics
MDPI., 13(12).
https://doi.org/10.3390/pharmaceutics13122143
Jovanović M, Petrović M, Cvijić S, Tomić N, Stojanović D, Ibrić S, Uskoković P. 3d printed buccal films for prolonged-release of propranolol hydrochloride: Development, characterization and bioavailability prediction. in Pharmaceutics. 2021;13(12).
doi:10.3390/pharmaceutics13122143 .
Jovanović, Marija, Petrović, Miloš, Cvijić, Sandra, Tomić, Nataša, Stojanović, Dušica, Ibrić, Svetlana, Uskoković, Petar, "3d printed buccal films for prolonged-release of propranolol hydrochloride: Development, characterization and bioavailability prediction" in Pharmaceutics, 13, no. 12 (2021),
https://doi.org/10.3390/pharmaceutics13122143 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB