FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant

Thumbnail
2021
ChitosanSodium_Dodecyl_Sulfate_pub_2021.pdf (19.31Mb)
Authors
Milinković Budinčić, Jelena
Petrović, Lidija
Đekić, Ljiljana
Aleksić, Milijana
Fraj, Jadranka
Popović, Senka
Bučko, Sandra
Katona, Jaroslav
Spasojević, Ljiljana
Škrbić, Jelena
Malenović, Anđelija
Article (Published version)
Metadata
Show full item record
Abstract
Microencapsulation of bioactive substances is a common strategy for their protection and release rate control. The use of chitosan (Ch) is particularly promising due to its abundance, biocompatibility, and interaction with anionic surfactants to form complexes of different characteristics with relevance for use in microcapsule wall design. In this study, Ch/sodium dodecyl sulfate (SDS) microcapsules, without and with cross-linking agent (formaldehyde (FA) or glutaraldehyde (GA)), were obtained by the spray drying of vitamin E loaded oil-in-water emulsion. All of the microcapsules had good stability during the drying process. Depending on the composition, their product yield, moisture content, and encapsulation efficiency varied between 11–34%, 1.14–1.62%, and 94–126%, respectively. SEM and FTIR analysis results indicate that SDS as well as cross-linkers significantly affected the microcapsule wall properties. The profiles of in vitro vitamin E release from the investigated microcapsule...s fit with the Korsmeyer-Peppas model (r2 > 0.9). The chemical structure of the anionic surfactant was found to have a significant effect on the vitamin E release mechanism. Ch/SDS coacervates may build a microcapsule wall without toxic crosslinkers. This enabled the combined diffusion/swelling based release mechanism of the encapsulated lipophilic substance, which can be considered favorable for utilization in food and pharmaceutical products.

Keywords:
Chitosan / Microencapsulation / Sodium dodecyl sulfate / Spray drying in vitro release kinetics / Vitamin E
Source:
Pharmaceuticals, 2021, 15, 1
Publisher:
  • MDPI
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200134 (University of Novi Sad, Faculty of Technology) (RS-200134)

DOI: 10.3390/ph15010054

ISSN: 1424-8247

WoS: 000747126900001

Scopus: 2-s2.0-85122162996
[ Google Scholar ]
5
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/4021
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Milinković Budinčić, Jelena
AU  - Petrović, Lidija
AU  - Đekić, Ljiljana
AU  - Aleksić, Milijana
AU  - Fraj, Jadranka
AU  - Popović, Senka
AU  - Bučko, Sandra
AU  - Katona, Jaroslav
AU  - Spasojević, Ljiljana
AU  - Škrbić, Jelena
AU  - Malenović, Anđelija
PY  - 2021
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4021
AB  - Microencapsulation of bioactive substances is a common strategy for their protection and release rate control. The use of chitosan (Ch) is particularly promising due to its abundance, biocompatibility, and interaction with anionic surfactants to form complexes of different characteristics with relevance for use in microcapsule wall design. In this study, Ch/sodium dodecyl sulfate (SDS) microcapsules, without and with cross-linking agent (formaldehyde (FA) or glutaraldehyde (GA)), were obtained by the spray drying of vitamin E loaded oil-in-water emulsion. All of the microcapsules had good stability during the drying process. Depending on the composition, their product yield, moisture content, and encapsulation efficiency varied between 11–34%, 1.14–1.62%, and 94–126%, respectively. SEM and FTIR analysis results indicate that SDS as well as cross-linkers significantly affected the microcapsule wall properties. The profiles of in vitro vitamin E release from the investigated microcapsules fit with the Korsmeyer-Peppas model (r2 > 0.9). The chemical structure of the anionic surfactant was found to have a significant effect on the vitamin E release mechanism. Ch/SDS coacervates may build a microcapsule wall without toxic crosslinkers. This enabled the combined diffusion/swelling based release mechanism of the encapsulated lipophilic substance, which can be considered favorable for utilization in food and pharmaceutical products.
PB  - MDPI
T2  - Pharmaceuticals
T1  - Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant
VL  - 15
IS  - 1
DO  - 10.3390/ph15010054
ER  - 
@article{
author = "Milinković Budinčić, Jelena and Petrović, Lidija and Đekić, Ljiljana and Aleksić, Milijana and Fraj, Jadranka and Popović, Senka and Bučko, Sandra and Katona, Jaroslav and Spasojević, Ljiljana and Škrbić, Jelena and Malenović, Anđelija",
year = "2021",
abstract = "Microencapsulation of bioactive substances is a common strategy for their protection and release rate control. The use of chitosan (Ch) is particularly promising due to its abundance, biocompatibility, and interaction with anionic surfactants to form complexes of different characteristics with relevance for use in microcapsule wall design. In this study, Ch/sodium dodecyl sulfate (SDS) microcapsules, without and with cross-linking agent (formaldehyde (FA) or glutaraldehyde (GA)), were obtained by the spray drying of vitamin E loaded oil-in-water emulsion. All of the microcapsules had good stability during the drying process. Depending on the composition, their product yield, moisture content, and encapsulation efficiency varied between 11–34%, 1.14–1.62%, and 94–126%, respectively. SEM and FTIR analysis results indicate that SDS as well as cross-linkers significantly affected the microcapsule wall properties. The profiles of in vitro vitamin E release from the investigated microcapsules fit with the Korsmeyer-Peppas model (r2 > 0.9). The chemical structure of the anionic surfactant was found to have a significant effect on the vitamin E release mechanism. Ch/SDS coacervates may build a microcapsule wall without toxic crosslinkers. This enabled the combined diffusion/swelling based release mechanism of the encapsulated lipophilic substance, which can be considered favorable for utilization in food and pharmaceutical products.",
publisher = "MDPI",
journal = "Pharmaceuticals",
title = "Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant",
volume = "15",
number = "1",
doi = "10.3390/ph15010054"
}
Milinković Budinčić, J., Petrović, L., Đekić, L., Aleksić, M., Fraj, J., Popović, S., Bučko, S., Katona, J., Spasojević, L., Škrbić, J.,& Malenović, A.. (2021). Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant. in Pharmaceuticals
MDPI., 15(1).
https://doi.org/10.3390/ph15010054
Milinković Budinčić J, Petrović L, Đekić L, Aleksić M, Fraj J, Popović S, Bučko S, Katona J, Spasojević L, Škrbić J, Malenović A. Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant. in Pharmaceuticals. 2021;15(1).
doi:10.3390/ph15010054 .
Milinković Budinčić, Jelena, Petrović, Lidija, Đekić, Ljiljana, Aleksić, Milijana, Fraj, Jadranka, Popović, Senka, Bučko, Sandra, Katona, Jaroslav, Spasojević, Ljiljana, Škrbić, Jelena, Malenović, Anđelija, "Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant" in Pharmaceuticals, 15, no. 1 (2021),
https://doi.org/10.3390/ph15010054 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB