Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant
Authors
Milinković Budinčić, Jelena
Petrović, Lidija

Đekić, Ljiljana

Aleksić, Milijana
Fraj, Jadranka
Popović, Senka

Bučko, Sandra

Katona, Jaroslav

Spasojević, Ljiljana

Škrbić, Jelena
Malenović, Anđelija

Article (Published version)
Metadata
Show full item recordAbstract
Microencapsulation of bioactive substances is a common strategy for their protection and release rate control. The use of chitosan (Ch) is particularly promising due to its abundance, biocompatibility, and interaction with anionic surfactants to form complexes of different characteristics with relevance for use in microcapsule wall design. In this study, Ch/sodium dodecyl sulfate (SDS) microcapsules, without and with cross-linking agent (formaldehyde (FA) or glutaraldehyde (GA)), were obtained by the spray drying of vitamin E loaded oil-in-water emulsion. All of the microcapsules had good stability during the drying process. Depending on the composition, their product yield, moisture content, and encapsulation efficiency varied between 11–34%, 1.14–1.62%, and 94–126%, respectively. SEM and FTIR analysis results indicate that SDS as well as cross-linkers significantly affected the microcapsule wall properties. The profiles of in vitro vitamin E release from the investigated microcapsule...s fit with the Korsmeyer-Peppas model (r2 > 0.9). The chemical structure of the anionic surfactant was found to have a significant effect on the vitamin E release mechanism. Ch/SDS coacervates may build a microcapsule wall without toxic crosslinkers. This enabled the combined diffusion/swelling based release mechanism of the encapsulated lipophilic substance, which can be considered favorable for utilization in food and pharmaceutical products.
Keywords:
Chitosan / Microencapsulation / Sodium dodecyl sulfate / Spray drying in vitro release kinetics / Vitamin ESource:
Pharmaceuticals, 2021, 15, 1Publisher:
- MDPI
Funding / projects:
DOI: 10.3390/ph15010054
ISSN: 1424-8247
WoS: 000747126900001
Scopus: 2-s2.0-85122162996
Collections
Institution/Community
PharmacyTY - JOUR AU - Milinković Budinčić, Jelena AU - Petrović, Lidija AU - Đekić, Ljiljana AU - Aleksić, Milijana AU - Fraj, Jadranka AU - Popović, Senka AU - Bučko, Sandra AU - Katona, Jaroslav AU - Spasojević, Ljiljana AU - Škrbić, Jelena AU - Malenović, Anđelija PY - 2021 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4021 AB - Microencapsulation of bioactive substances is a common strategy for their protection and release rate control. The use of chitosan (Ch) is particularly promising due to its abundance, biocompatibility, and interaction with anionic surfactants to form complexes of different characteristics with relevance for use in microcapsule wall design. In this study, Ch/sodium dodecyl sulfate (SDS) microcapsules, without and with cross-linking agent (formaldehyde (FA) or glutaraldehyde (GA)), were obtained by the spray drying of vitamin E loaded oil-in-water emulsion. All of the microcapsules had good stability during the drying process. Depending on the composition, their product yield, moisture content, and encapsulation efficiency varied between 11–34%, 1.14–1.62%, and 94–126%, respectively. SEM and FTIR analysis results indicate that SDS as well as cross-linkers significantly affected the microcapsule wall properties. The profiles of in vitro vitamin E release from the investigated microcapsules fit with the Korsmeyer-Peppas model (r2 > 0.9). The chemical structure of the anionic surfactant was found to have a significant effect on the vitamin E release mechanism. Ch/SDS coacervates may build a microcapsule wall without toxic crosslinkers. This enabled the combined diffusion/swelling based release mechanism of the encapsulated lipophilic substance, which can be considered favorable for utilization in food and pharmaceutical products. PB - MDPI T2 - Pharmaceuticals T1 - Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant VL - 15 IS - 1 DO - 10.3390/ph15010054 ER -
@article{ author = "Milinković Budinčić, Jelena and Petrović, Lidija and Đekić, Ljiljana and Aleksić, Milijana and Fraj, Jadranka and Popović, Senka and Bučko, Sandra and Katona, Jaroslav and Spasojević, Ljiljana and Škrbić, Jelena and Malenović, Anđelija", year = "2021", abstract = "Microencapsulation of bioactive substances is a common strategy for their protection and release rate control. The use of chitosan (Ch) is particularly promising due to its abundance, biocompatibility, and interaction with anionic surfactants to form complexes of different characteristics with relevance for use in microcapsule wall design. In this study, Ch/sodium dodecyl sulfate (SDS) microcapsules, without and with cross-linking agent (formaldehyde (FA) or glutaraldehyde (GA)), were obtained by the spray drying of vitamin E loaded oil-in-water emulsion. All of the microcapsules had good stability during the drying process. Depending on the composition, their product yield, moisture content, and encapsulation efficiency varied between 11–34%, 1.14–1.62%, and 94–126%, respectively. SEM and FTIR analysis results indicate that SDS as well as cross-linkers significantly affected the microcapsule wall properties. The profiles of in vitro vitamin E release from the investigated microcapsules fit with the Korsmeyer-Peppas model (r2 > 0.9). The chemical structure of the anionic surfactant was found to have a significant effect on the vitamin E release mechanism. Ch/SDS coacervates may build a microcapsule wall without toxic crosslinkers. This enabled the combined diffusion/swelling based release mechanism of the encapsulated lipophilic substance, which can be considered favorable for utilization in food and pharmaceutical products.", publisher = "MDPI", journal = "Pharmaceuticals", title = "Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant", volume = "15", number = "1", doi = "10.3390/ph15010054" }
Milinković Budinčić, J., Petrović, L., Đekić, L., Aleksić, M., Fraj, J., Popović, S., Bučko, S., Katona, J., Spasojević, L., Škrbić, J.,& Malenović, A.. (2021). Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant. in Pharmaceuticals MDPI., 15(1). https://doi.org/10.3390/ph15010054
Milinković Budinčić J, Petrović L, Đekić L, Aleksić M, Fraj J, Popović S, Bučko S, Katona J, Spasojević L, Škrbić J, Malenović A. Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant. in Pharmaceuticals. 2021;15(1). doi:10.3390/ph15010054 .
Milinković Budinčić, Jelena, Petrović, Lidija, Đekić, Ljiljana, Aleksić, Milijana, Fraj, Jadranka, Popović, Senka, Bučko, Sandra, Katona, Jaroslav, Spasojević, Ljiljana, Škrbić, Jelena, Malenović, Anđelija, "Chitosan/Sodium Dodecyl Sulfate Complexes for Microencapsulation of Vitamin E and Its Release Profile— Understanding the Effect of Anionic Surfactant" in Pharmaceuticals, 15, no. 1 (2021), https://doi.org/10.3390/ph15010054 . .