Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention
Authors
Ružić, Dušan
Đoković, Nemanja

Srdić-Rajić, Tatjana

Echeverria, Cesar
Nikolić, Katarina

Santibanez, Juan
Article (Published version)
Metadata
Show full item recordAbstract
The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accord...ingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.
Keywords:
Cancer / Bifunctional inhibitors / Chemoprevention / Clinical trials / Dietary-derived inhibitors / Epigenetic / HDAC inhibitors / Histone deacetylases / PROTACSource:
Pharmaceutics, 2022, 14, 1Publisher:
- MDPI
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200015 (University of Belgrade, Institute for Medical Research) (RS-200015)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200161 (University of Belgrade, Faculty of Pharmacy) (RS-200161)
DOI: 10.3390/pharmaceutics14010209
ISSN: 1999-4923
WoS: 00081192800000
Scopus: 2-s2.0-85122998631
Collections
Institution/Community
PharmacyTY - JOUR AU - Ružić, Dušan AU - Đoković, Nemanja AU - Srdić-Rajić, Tatjana AU - Echeverria, Cesar AU - Nikolić, Katarina AU - Santibanez, Juan PY - 2022 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4025 AB - The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies. PB - MDPI T2 - Pharmaceutics T1 - Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention VL - 14 IS - 1 DO - 10.3390/pharmaceutics14010209 ER -
@article{ author = "Ružić, Dušan and Đoković, Nemanja and Srdić-Rajić, Tatjana and Echeverria, Cesar and Nikolić, Katarina and Santibanez, Juan", year = "2022", abstract = "The dysregulation of gene expression is a critical event involved in all steps of tumorigenesis. Aberrant histone and non-histone acetylation modifications of gene expression due to the abnormal activation of histone deacetylases (HDAC) have been reported in hematologic and solid types of cancer. In this sense, the cancer-associated epigenetic alterations are promising targets for anticancer therapy and chemoprevention. HDAC inhibitors (HDACi) induce histone hyperacetylation within target proteins, altering cell cycle and proliferation, cell differentiation, and the regulation of cell death programs. Over the last three decades, an increasing number of synthetic and naturally derived compounds, such as dietary-derived products, have been demonstrated to act as HDACi and have provided biological and molecular insights with regard to the role of HDAC in cancer. The first part of this review is focused on the biological roles of the Zinc-dependent HDAC family in malignant diseases. Accordingly, the small-molecules and natural products such as HDACi are described in terms of cancer therapy and chemoprevention. Furthermore, structural considerations are included to improve the HDACi selectivity and combinatory potential with other specific targeting agents in bifunctional inhibitors and proteolysis targeting chimeras. Additionally, clinical trials that combine HDACi with current therapies are discussed, which may open new avenues in terms of the feasibility of HDACi’s future clinical applications in precision cancer therapies.", publisher = "MDPI", journal = "Pharmaceutics", title = "Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention", volume = "14", number = "1", doi = "10.3390/pharmaceutics14010209" }
Ružić, D., Đoković, N., Srdić-Rajić, T., Echeverria, C., Nikolić, K.,& Santibanez, J.. (2022). Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. in Pharmaceutics MDPI., 14(1). https://doi.org/10.3390/pharmaceutics14010209
Ružić D, Đoković N, Srdić-Rajić T, Echeverria C, Nikolić K, Santibanez J. Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention. in Pharmaceutics. 2022;14(1). doi:10.3390/pharmaceutics14010209 .
Ružić, Dušan, Đoković, Nemanja, Srdić-Rajić, Tatjana, Echeverria, Cesar, Nikolić, Katarina, Santibanez, Juan, "Targeting Histone Deacetylases: Opportunities for Cancer Treatment and Chemoprevention" in Pharmaceutics, 14, no. 1 (2022), https://doi.org/10.3390/pharmaceutics14010209 . .