FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors

Authorized Users Only
2022
Authors
Rupar, Jelena
Bajuk-Bogdanović, Danica
Milojević-Rakić, Maja
Krstić, Jugoslav
Upadhyay, Kush
Gavrilov, Nemanja
Janošević-Ležaić, Aleksandra
Article (Published version)
Metadata
Show full item record
Abstract
Here, we propose a novel, electrochemical preparation of in situ N-doped alginate-based carbon precursors with monodispersed zinc ions. Obtained carbons were evaluated by spectroscopic (FTIR, Raman and XPS), textural (N2 physisorption), microscopic (TEM) and elemental (SEM-EDS) descriptors to establish their distinctive fea- tures originating from different synthetic procedures. Carbons characteristics were assessed in view of several carbonization temperatures applied for their preparation from alginate precursors, and individual and joint effect of zinc and nitrogen on the precursor. Obtained Zn monodispersion, emphasizes the significance of electro- chemical preparation, allowing increasing temperature to induce changes from its ionic form to carbonate and oxide, while at 800 ◦C ZnO further reduces and evaporates. Since homogeneously dispersed Zn species acts as porosity evolving agent during carbonization, a substantial surface area is developed, in the range 718–1056 m2 g
Keywords:
Alginate / Capacitance / Monodispersed Zn / N–doped carbon / Porosity development
Source:
Microporous and Mesoporous Materials, 2022, 335
Publisher:
  • Elsevier B.V.
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200161 (University of Belgrade, Faculty of Pharmacy) (RS-200161)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200146 (University of Belgrade, Faculty of Physical Chemistry) (RS-200146)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • Bilateral project between Serbia and Portugal (337-00-00227/2019–09/76

DOI: 10.1016/j.micromeso.2022.111790

ISSN: 1387-1811

WoS: 000787887000004

Scopus: 2-s2.0-85125955960
[ Google Scholar ]
5
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/4069
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Rupar, Jelena
AU  - Bajuk-Bogdanović, Danica
AU  - Milojević-Rakić, Maja
AU  - Krstić, Jugoslav
AU  - Upadhyay, Kush
AU  - Gavrilov, Nemanja
AU  - Janošević-Ležaić, Aleksandra
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4069
AB  - Here, we propose a novel, electrochemical preparation of in situ N-doped alginate-based carbon precursors with monodispersed zinc ions. Obtained carbons were evaluated by spectroscopic (FTIR, Raman and XPS), textural (N2 physisorption), microscopic (TEM) and elemental (SEM-EDS) descriptors to establish their distinctive fea- tures originating from different synthetic procedures. Carbons characteristics were assessed in view of several carbonization temperatures applied for their preparation from alginate precursors, and individual and joint effect of zinc and nitrogen on the precursor. Obtained Zn monodispersion, emphasizes the significance of electro- chemical preparation, allowing increasing temperature to induce changes from its ionic form to carbonate and oxide, while at 800 ◦C ZnO further reduces and evaporates. Since homogeneously dispersed Zn species acts as porosity evolving agent during carbonization, a substantial surface area is developed, in the range 718–1056 m2 g
PB  - Elsevier B.V.
T2  - Microporous and Mesoporous Materials
T1  - Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors
VL  - 335
DO  - 10.1016/j.micromeso.2022.111790
ER  - 
@article{
author = "Rupar, Jelena and Bajuk-Bogdanović, Danica and Milojević-Rakić, Maja and Krstić, Jugoslav and Upadhyay, Kush and Gavrilov, Nemanja and Janošević-Ležaić, Aleksandra",
year = "2022",
abstract = "Here, we propose a novel, electrochemical preparation of in situ N-doped alginate-based carbon precursors with monodispersed zinc ions. Obtained carbons were evaluated by spectroscopic (FTIR, Raman and XPS), textural (N2 physisorption), microscopic (TEM) and elemental (SEM-EDS) descriptors to establish their distinctive fea- tures originating from different synthetic procedures. Carbons characteristics were assessed in view of several carbonization temperatures applied for their preparation from alginate precursors, and individual and joint effect of zinc and nitrogen on the precursor. Obtained Zn monodispersion, emphasizes the significance of electro- chemical preparation, allowing increasing temperature to induce changes from its ionic form to carbonate and oxide, while at 800 ◦C ZnO further reduces and evaporates. Since homogeneously dispersed Zn species acts as porosity evolving agent during carbonization, a substantial surface area is developed, in the range 718–1056 m2 g",
publisher = "Elsevier B.V.",
journal = "Microporous and Mesoporous Materials",
title = "Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors",
volume = "335",
doi = "10.1016/j.micromeso.2022.111790"
}
Rupar, J., Bajuk-Bogdanović, D., Milojević-Rakić, M., Krstić, J., Upadhyay, K., Gavrilov, N.,& Janošević-Ležaić, A.. (2022). Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors. in Microporous and Mesoporous Materials
Elsevier B.V.., 335.
https://doi.org/10.1016/j.micromeso.2022.111790
Rupar J, Bajuk-Bogdanović D, Milojević-Rakić M, Krstić J, Upadhyay K, Gavrilov N, Janošević-Ležaić A. Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors. in Microporous and Mesoporous Materials. 2022;335.
doi:10.1016/j.micromeso.2022.111790 .
Rupar, Jelena, Bajuk-Bogdanović, Danica, Milojević-Rakić, Maja, Krstić, Jugoslav, Upadhyay, Kush, Gavrilov, Nemanja, Janošević-Ležaić, Aleksandra, "Tailored porosity development in carbons via Zn2+ monodispersion: Fitting supercapacitors" in Microporous and Mesoporous Materials, 335 (2022),
https://doi.org/10.1016/j.micromeso.2022.111790 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB