FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

How to Obtain Maximum Environmental Applicability from Natural Silicates

Authorized Users Only
2022
Authors
Popadić, Daliborka
Gavrilov, Nemanja
Ignjatović, Ljubiša
Krajišnik, Danina
Mentus, Slavko
Milojević-Rakić, Maja
Bajuk-Bogdanović, Danica
Article (Published version)
Metadata
Show full item record
Abstract
Unmodified natural silicates (bentonite, kaolin, clinoptilolite and diatomites) were tested as adsorbents for the organic pollutants in water tables using Methylene Blue (MB) as the model adsorbate. Among the selected materials, bentonite adsorbed as much as 237 mg/g, confirming its excellent suitability for pollutant removal. Spectral evidence confirmed successful MB immobilization at the bentonite surface. Furthermore, the thermal treatment of MB-saturated adsorbent in an inert atmosphere at 700 °C produced a carbon/silicate composite. EDX confirmed the formation of the nitrogen-doped carbon overlay on the silica scaffold and the obtained composite material was probed as an electrode material for oxygen reduction in an alkaline solution. Reduction proceeded via a two-electron mechanism with the main product being HO2−, a known nucleophile, which was subsequently used to degrade/demethylate MB. The composite showed a considerable 70% MB removal rate after an hour of electrochemical tr...eatment. The synergy between the processes of adsorption of MB and the surface-generated HO2− dictates the efficiency of the method and points to a possible route for spent adsorbent reuse in the form of a durable product for environmental protection.

Keywords:
bentonite / methylene blue / oxygen reduction reaction / spent adsorbent
Source:
Catalysts, 2022, 12, 5
Publisher:
  • MDPI
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200146 (University of Belgrade, Faculty of Physical Chemistry) (RS-200146)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200161 (University of Belgrade, Faculty of Pharmacy) (RS-200161)

DOI: 10.3390/catal12050519

ISSN: 2073-4344

WoS: 00080152910000

Scopus: 2-s2.0-85129371491
[ Google Scholar ]
3
2
URI
https://www.mdpi.com/2073-4344/12/5/519
https://farfar.pharmacy.bg.ac.rs/handle/123456789/4099
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Popadić, Daliborka
AU  - Gavrilov, Nemanja
AU  - Ignjatović, Ljubiša
AU  - Krajišnik, Danina
AU  - Mentus, Slavko
AU  - Milojević-Rakić, Maja
AU  - Bajuk-Bogdanović, Danica
PY  - 2022
UR  - https://www.mdpi.com/2073-4344/12/5/519
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4099
AB  - Unmodified natural silicates (bentonite, kaolin, clinoptilolite and diatomites) were tested as adsorbents for the organic pollutants in water tables using Methylene Blue (MB) as the model adsorbate. Among the selected materials, bentonite adsorbed as much as 237 mg/g, confirming its excellent suitability for pollutant removal. Spectral evidence confirmed successful MB immobilization at the bentonite surface. Furthermore, the thermal treatment of MB-saturated adsorbent in an inert atmosphere at 700 °C produced a carbon/silicate composite. EDX confirmed the formation of the nitrogen-doped carbon overlay on the silica scaffold and the obtained composite material was probed as an electrode material for oxygen reduction in an alkaline solution. Reduction proceeded via a two-electron mechanism with the main product being HO2−, a known nucleophile, which was subsequently used to degrade/demethylate MB. The composite showed a considerable 70% MB removal rate after an hour of electrochemical treatment. The synergy between the processes of adsorption of MB and the surface-generated HO2− dictates the efficiency of the method and points to a possible route for spent adsorbent reuse in the form of a durable product for environmental protection.
PB  - MDPI
T2  - Catalysts
T1  - How to Obtain Maximum Environmental Applicability from Natural Silicates
VL  - 12
IS  - 5
DO  - 10.3390/catal12050519
ER  - 
@article{
author = "Popadić, Daliborka and Gavrilov, Nemanja and Ignjatović, Ljubiša and Krajišnik, Danina and Mentus, Slavko and Milojević-Rakić, Maja and Bajuk-Bogdanović, Danica",
year = "2022",
abstract = "Unmodified natural silicates (bentonite, kaolin, clinoptilolite and diatomites) were tested as adsorbents for the organic pollutants in water tables using Methylene Blue (MB) as the model adsorbate. Among the selected materials, bentonite adsorbed as much as 237 mg/g, confirming its excellent suitability for pollutant removal. Spectral evidence confirmed successful MB immobilization at the bentonite surface. Furthermore, the thermal treatment of MB-saturated adsorbent in an inert atmosphere at 700 °C produced a carbon/silicate composite. EDX confirmed the formation of the nitrogen-doped carbon overlay on the silica scaffold and the obtained composite material was probed as an electrode material for oxygen reduction in an alkaline solution. Reduction proceeded via a two-electron mechanism with the main product being HO2−, a known nucleophile, which was subsequently used to degrade/demethylate MB. The composite showed a considerable 70% MB removal rate after an hour of electrochemical treatment. The synergy between the processes of adsorption of MB and the surface-generated HO2− dictates the efficiency of the method and points to a possible route for spent adsorbent reuse in the form of a durable product for environmental protection.",
publisher = "MDPI",
journal = "Catalysts",
title = "How to Obtain Maximum Environmental Applicability from Natural Silicates",
volume = "12",
number = "5",
doi = "10.3390/catal12050519"
}
Popadić, D., Gavrilov, N., Ignjatović, L., Krajišnik, D., Mentus, S., Milojević-Rakić, M.,& Bajuk-Bogdanović, D.. (2022). How to Obtain Maximum Environmental Applicability from Natural Silicates. in Catalysts
MDPI., 12(5).
https://doi.org/10.3390/catal12050519
Popadić D, Gavrilov N, Ignjatović L, Krajišnik D, Mentus S, Milojević-Rakić M, Bajuk-Bogdanović D. How to Obtain Maximum Environmental Applicability from Natural Silicates. in Catalysts. 2022;12(5).
doi:10.3390/catal12050519 .
Popadić, Daliborka, Gavrilov, Nemanja, Ignjatović, Ljubiša, Krajišnik, Danina, Mentus, Slavko, Milojević-Rakić, Maja, Bajuk-Bogdanović, Danica, "How to Obtain Maximum Environmental Applicability from Natural Silicates" in Catalysts, 12, no. 5 (2022),
https://doi.org/10.3390/catal12050519 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB