FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach

Authorized Users Only
2022
Authors
Vasiljević, Ivana
Turković, Erna
Piller, Michael
Mirković, Miljana
Zimmer, Andreas
Aleksić, Ivana
Ibrić, Svetlana
Parojčić, Jelena
Article (Published version)
Metadata
Show full item record
Abstract
3D printing in dosage forms fabrication is in the focus of researchers, however, the attempts in multiparticulate units (MPUs) preparation are scarce. The aim of this study was to fabricate different size MPUs by selective laser sintering (SLS), using different polymers, and investigate their processability based on the SeDeM Expert System approach. MPUs (1- or 2-mm size) were prepared with model drug (ibuprofen or caffeine), polymer (poly(ethylene)oxide (PEO), ethyl cellulose (EC) or methacrylic acid-ethyl acrylate copolymer (MA-EA)) and printing aid. Comprehensive sample characterization was performed and experimentally obtained parameters were mathematically transformed and evaluated using the SeDeM Expert System framework. The obtained samples exhibited irregular shape, despite the spherical printing object design. Polymer incorporated notably affected MPUs properties. The obtained samples exhibited low bulk density, good flowability-, as well as stability-related parameters, which... indicated their suitability for filling into capsules or sachets. Low density values implied that compressibility enhancing excipients may be required for MPUs incorporation in tablets. Samples containing EC and MA-EA were found suitable for compression, due to high compacts tensile strength. The obtained results indicate that SeDeM Expert System may extended from powder compressibility evaluation tool to framework facilitating powders/multiparticulate units processing.

Keywords:
3D printing / compression / ethyl cellulose / flowability / methacrylic acid-ethyl acrylate copolymer (1:1) / poly(ethylene)oxide
Source:
International Journal of Pharmaceutics, 2022, 629
Publisher:
  • Elsevier B.V.
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200161 (University of Belgrade, Faculty of Pharmacy) (RS-200161)

DOI: 10.1016/j.ijpharm.2022.122337

ISSN: 0378-5173

Scopus: 2-s2.0-85141480772
[ Google Scholar ]
1
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/4318
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Vasiljević, Ivana
AU  - Turković, Erna
AU  - Piller, Michael
AU  - Mirković, Miljana
AU  - Zimmer, Andreas
AU  - Aleksić, Ivana
AU  - Ibrić, Svetlana
AU  - Parojčić, Jelena
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4318
AB  - 3D printing in dosage forms fabrication is in the focus of researchers, however, the attempts in multiparticulate units (MPUs) preparation are scarce. The aim of this study was to fabricate different size MPUs by selective laser sintering (SLS), using different polymers, and investigate their processability based on the SeDeM Expert System approach. MPUs (1- or 2-mm size) were prepared with model drug (ibuprofen or caffeine), polymer (poly(ethylene)oxide (PEO), ethyl cellulose (EC) or methacrylic acid-ethyl acrylate copolymer (MA-EA)) and printing aid. Comprehensive sample characterization was performed and experimentally obtained parameters were mathematically transformed and evaluated using the SeDeM Expert System framework. The obtained samples exhibited irregular shape, despite the spherical printing object design. Polymer incorporated notably affected MPUs properties. The obtained samples exhibited low bulk density, good flowability-, as well as stability-related parameters, which indicated their suitability for filling into capsules or sachets. Low density values implied that compressibility enhancing excipients may be required for MPUs incorporation in tablets. Samples containing EC and MA-EA were found suitable for compression, due to high compacts tensile strength. The obtained results indicate that SeDeM Expert System may extended from powder compressibility evaluation tool to framework facilitating powders/multiparticulate units processing.
PB  - Elsevier B.V.
T2  - International Journal of Pharmaceutics
T1  - Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach
VL  - 629
DO  - 10.1016/j.ijpharm.2022.122337
ER  - 
@article{
author = "Vasiljević, Ivana and Turković, Erna and Piller, Michael and Mirković, Miljana and Zimmer, Andreas and Aleksić, Ivana and Ibrić, Svetlana and Parojčić, Jelena",
year = "2022",
abstract = "3D printing in dosage forms fabrication is in the focus of researchers, however, the attempts in multiparticulate units (MPUs) preparation are scarce. The aim of this study was to fabricate different size MPUs by selective laser sintering (SLS), using different polymers, and investigate their processability based on the SeDeM Expert System approach. MPUs (1- or 2-mm size) were prepared with model drug (ibuprofen or caffeine), polymer (poly(ethylene)oxide (PEO), ethyl cellulose (EC) or methacrylic acid-ethyl acrylate copolymer (MA-EA)) and printing aid. Comprehensive sample characterization was performed and experimentally obtained parameters were mathematically transformed and evaluated using the SeDeM Expert System framework. The obtained samples exhibited irregular shape, despite the spherical printing object design. Polymer incorporated notably affected MPUs properties. The obtained samples exhibited low bulk density, good flowability-, as well as stability-related parameters, which indicated their suitability for filling into capsules or sachets. Low density values implied that compressibility enhancing excipients may be required for MPUs incorporation in tablets. Samples containing EC and MA-EA were found suitable for compression, due to high compacts tensile strength. The obtained results indicate that SeDeM Expert System may extended from powder compressibility evaluation tool to framework facilitating powders/multiparticulate units processing.",
publisher = "Elsevier B.V.",
journal = "International Journal of Pharmaceutics",
title = "Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach",
volume = "629",
doi = "10.1016/j.ijpharm.2022.122337"
}
Vasiljević, I., Turković, E., Piller, M., Mirković, M., Zimmer, A., Aleksić, I., Ibrić, S.,& Parojčić, J.. (2022). Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach. in International Journal of Pharmaceutics
Elsevier B.V.., 629.
https://doi.org/10.1016/j.ijpharm.2022.122337
Vasiljević I, Turković E, Piller M, Mirković M, Zimmer A, Aleksić I, Ibrić S, Parojčić J. Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach. in International Journal of Pharmaceutics. 2022;629.
doi:10.1016/j.ijpharm.2022.122337 .
Vasiljević, Ivana, Turković, Erna, Piller, Michael, Mirković, Miljana, Zimmer, Andreas, Aleksić, Ivana, Ibrić, Svetlana, Parojčić, Jelena, "Processability evaluation of multiparticulate units prepared by selective laser sintering using the SeDeM Expert System approach" in International Journal of Pharmaceutics, 629 (2022),
https://doi.org/10.1016/j.ijpharm.2022.122337 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB