FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles

Authorized Users Only
2022
Authors
Stevanović, Magdalena M.
Filipović, Nenad
Kuzmanović, Maja
Tomić, Nina
Ušjak, Dušan
Milenković, Marina
Zheng, Kai
Stampfl, Juergen
Boccaccini, Aldo R.
Article (Published version)
Metadata
Show full item record
Abstract
Multidrug-resistant bacterial strains represent an emerging global health threat and a great obstacle for bone tissue engineering. One of the major components of the extracellular matrix of the bone is a collagen protein, while selenium is an element that has antimicrobial potential, and is also important for bone metabolism and bone health. Here we represent the incorporation of selenium nanoparticles (SeNPs) synthesized by the green chemical reduction method into collagen gels to produce a composite material, collagen/SeNPs, with antimicrobial properties. The samples were comprehensively characterized by zeta potential measurements, dynamic light scattering inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), optical microscopy, field-emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry The cytotoxicity of the SeNPS, as well as collagen/SeNPs, was tested on the MRC-5 cells. It ...was revealed that collagen/SeNPS expressed a lower cytotoxic effect. Collagen/SeNPs showed significant antibacterial activity against all tested Gram-positive strains, the major causative agents of orthopedic infections as well as Candida albicans. Furthermore, three-dimensional β-tricalcium phosphate (3D-TCP) scaffolds were fabricated by a well-established 3D printing (lithography) method, and afterward preliminary coated by newly-synthesized SeNPs or collagen/SeNPs. In addition, uncoated 3D-TCP scaffolds as well as coated by collagen/SeNPs were subjected to biofilm formation. The production of Staphylococcus aureus biofilm on coated scaffolds by collagen/SeNPs was significantly reduced compared to the uncoated ones.

Keywords:
biomaterials / composite materials / selenium nanoparticles / collagen / antimicrobial activity / scaffolds
Source:
Journal of Biomaterials Applications, 2022, 36, 10, 1800-1811
Publisher:
  • SAGE Publications Ltd
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
  • The bilateral project between Serbia and Austria (project No: SRB 24/2018, project title: Scaffolds with controlled 3-D architecture designed by photopolymerization
  • Bilateral project between Serbia and Germany (DAAD project 57514776)

DOI: 10.1177/08853282211073731

ISSN: 0885-3282

WoS: 000764244600001

Scopus: 2-s2.0-85126034982
[ Google Scholar ]
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/4357
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Stevanović, Magdalena M.
AU  - Filipović, Nenad
AU  - Kuzmanović, Maja
AU  - Tomić, Nina
AU  - Ušjak, Dušan
AU  - Milenković, Marina
AU  - Zheng, Kai
AU  - Stampfl, Juergen
AU  - Boccaccini, Aldo R.
PY  - 2022
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4357
AB  - Multidrug-resistant bacterial strains represent an emerging global health threat and a great obstacle for bone tissue engineering. One of the major components of the extracellular matrix of the bone is a collagen protein, while selenium is an element that has antimicrobial potential, and is also important for bone metabolism and bone health. Here we represent the incorporation of selenium nanoparticles (SeNPs) synthesized by the green chemical reduction method into collagen gels to produce a composite material, collagen/SeNPs, with antimicrobial properties. The samples were comprehensively characterized by zeta potential measurements, dynamic light scattering inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), optical microscopy, field-emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry The cytotoxicity of the SeNPS, as well as collagen/SeNPs, was tested on the MRC-5 cells. It was revealed that collagen/SeNPS expressed a lower cytotoxic effect. Collagen/SeNPs showed significant antibacterial activity against all tested Gram-positive strains, the major causative agents of orthopedic infections as well as Candida albicans. Furthermore, three-dimensional β-tricalcium phosphate (3D-TCP) scaffolds were fabricated by a well-established 3D printing (lithography) method, and afterward preliminary coated by newly-synthesized SeNPs or collagen/SeNPs. In addition, uncoated 3D-TCP scaffolds as well as coated by collagen/SeNPs were subjected to biofilm formation. The production of Staphylococcus aureus biofilm on coated scaffolds by collagen/SeNPs was significantly reduced compared to the uncoated ones.
PB  - SAGE Publications Ltd
T2  - Journal of Biomaterials Applications
T1  - Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles
VL  - 36
IS  - 10
SP  - 1800
EP  - 1811
DO  - 10.1177/08853282211073731
ER  - 
@article{
author = "Stevanović, Magdalena M. and Filipović, Nenad and Kuzmanović, Maja and Tomić, Nina and Ušjak, Dušan and Milenković, Marina and Zheng, Kai and Stampfl, Juergen and Boccaccini, Aldo R.",
year = "2022",
abstract = "Multidrug-resistant bacterial strains represent an emerging global health threat and a great obstacle for bone tissue engineering. One of the major components of the extracellular matrix of the bone is a collagen protein, while selenium is an element that has antimicrobial potential, and is also important for bone metabolism and bone health. Here we represent the incorporation of selenium nanoparticles (SeNPs) synthesized by the green chemical reduction method into collagen gels to produce a composite material, collagen/SeNPs, with antimicrobial properties. The samples were comprehensively characterized by zeta potential measurements, dynamic light scattering inductively coupled plasma-mass spectrometry (ICP-MS), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), optical microscopy, field-emission scanning electron microscopy (FE-SEM), and differential scanning calorimetry The cytotoxicity of the SeNPS, as well as collagen/SeNPs, was tested on the MRC-5 cells. It was revealed that collagen/SeNPS expressed a lower cytotoxic effect. Collagen/SeNPs showed significant antibacterial activity against all tested Gram-positive strains, the major causative agents of orthopedic infections as well as Candida albicans. Furthermore, three-dimensional β-tricalcium phosphate (3D-TCP) scaffolds were fabricated by a well-established 3D printing (lithography) method, and afterward preliminary coated by newly-synthesized SeNPs or collagen/SeNPs. In addition, uncoated 3D-TCP scaffolds as well as coated by collagen/SeNPs were subjected to biofilm formation. The production of Staphylococcus aureus biofilm on coated scaffolds by collagen/SeNPs was significantly reduced compared to the uncoated ones.",
publisher = "SAGE Publications Ltd",
journal = "Journal of Biomaterials Applications",
title = "Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles",
volume = "36",
number = "10",
pages = "1800-1811",
doi = "10.1177/08853282211073731"
}
Stevanović, M. M., Filipović, N., Kuzmanović, M., Tomić, N., Ušjak, D., Milenković, M., Zheng, K., Stampfl, J.,& Boccaccini, A. R.. (2022). Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles. in Journal of Biomaterials Applications
SAGE Publications Ltd., 36(10), 1800-1811.
https://doi.org/10.1177/08853282211073731
Stevanović MM, Filipović N, Kuzmanović M, Tomić N, Ušjak D, Milenković M, Zheng K, Stampfl J, Boccaccini AR. Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles. in Journal of Biomaterials Applications. 2022;36(10):1800-1811.
doi:10.1177/08853282211073731 .
Stevanović, Magdalena M., Filipović, Nenad, Kuzmanović, Maja, Tomić, Nina, Ušjak, Dušan, Milenković, Marina, Zheng, Kai, Stampfl, Juergen, Boccaccini, Aldo R., "Synthesis and characterization of a collagen-based composite material containing selenium nanoparticles" in Journal of Biomaterials Applications, 36, no. 10 (2022):1800-1811,
https://doi.org/10.1177/08853282211073731 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB