rcub.pharmacy.logo
rcub.pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   IBISS RADaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   IBISS RADaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity

Thumbnail
2023
Carbonization_of_MOF-5Polyaniline_pub_2023.pdf (4.553Mb)
Authors
Savić, Marjetka
Janošević-Ležaić, Aleksandra
Gavrilov, Nemanja
Pašti, Igor
Nedić Vasiljević, Bojana
Krstić, Jugoslav
Ćirić-Marjanović, Gordana
Article (Published version)
Metadata
Show full item record
Abstract
Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)), synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites. The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition, molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES) or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline phases. PANI and MOF-5 acted synergistically to produce C-(MOF-...5/PANI)s with high SBET (up to 609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 F g−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively. The developed composites represent promising electrode materials for supercapacitors.

Keywords:
capacitance / carbonization / composite / MOF-5 / N,O-doped carbon / polyaniline / surface area / ZnO / ZnS
Source:
Materials, 2023, 16, 3
Publisher:
  • MDPI
Funding / projects:
  • AdConPolyMat - Advanced Conducting Polymer-Based Materials for Electrochemical Energy Conversion and Storage, Sensors and Environmental Protection (RS-7750219)

DOI: 10.3390/ma16031018

ISSN: 1996-1944

PubMed: 36770026

Scopus: 2-s2.0-85147847348
[ Google Scholar ]
1
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/4431
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Savić, Marjetka
AU  - Janošević-Ležaić, Aleksandra
AU  - Gavrilov, Nemanja
AU  - Pašti, Igor
AU  - Nedić Vasiljević, Bojana
AU  - Krstić, Jugoslav
AU  - Ćirić-Marjanović, Gordana
PY  - 2023
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4431
AB  - Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)), synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites. The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition, molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES) or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to 609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 F g−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively. The developed composites represent promising electrode materials for supercapacitors.
PB  - MDPI
T2  - Materials
T1  - Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity
VL  - 16
IS  - 3
DO  - 10.3390/ma16031018
ER  - 
@article{
author = "Savić, Marjetka and Janošević-Ležaić, Aleksandra and Gavrilov, Nemanja and Pašti, Igor and Nedić Vasiljević, Bojana and Krstić, Jugoslav and Ćirić-Marjanović, Gordana",
year = "2023",
abstract = "Composites of carbons with metal oxides and metal sulfides have attracted a lot of interest as materials for energy conversion and storage applications. Herein, we report on novel N,O-doped carbon/ZnO/ZnS and N,O-doped carbon/ZnO composites (generally named C-(MOF-5/PANI)), synthesized by the carbonization of metal–organic framework MOF-5/polyaniline (PANI) composites. The produced C-(MOF-5/PANI)s are comprehensively characterized in terms of composition, molecular and crystalline structure, morphology, electrical conductivity, surface area, and electrochemical behavior. The composition and properties of C-(MOF-5/PANI) composites are dictated by the composition of MOF-5/PANI precursors and the form of PANI (conducting emeraldine salt (ES) or nonconducting emeraldine base). The ZnS phase is formed only with the PANI-ES form due to S-containing counter-ions. XRPD revealed that ZnO and ZnS existed as pure wurtzite crystalline phases. PANI and MOF-5 acted synergistically to produce C-(MOF-5/PANI)s with high SBET (up to 609 m2 g−1), electrical conductivity (up to 0.24 S cm−1), and specific capacitance, Cspec, (up to 238.2 F g−1 at 10 mV s−1). Values of Cspec commensurated with N content in C-(MOF-5/PANI) composites (1–10 wt.%) and overcame Cspec of carbonized individual components PANI and MOF-5. By acid etching treatment of C-(MOF-5/PANI), SBET and Cspec increased to 1148 m2 g−1 and 341 F g−1, respectively. The developed composites represent promising electrode materials for supercapacitors.",
publisher = "MDPI",
journal = "Materials",
title = "Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity",
volume = "16",
number = "3",
doi = "10.3390/ma16031018"
}
Savić, M., Janošević-Ležaić, A., Gavrilov, N., Pašti, I., Nedić Vasiljević, B., Krstić, J.,& Ćirić-Marjanović, G.. (2023). Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. in Materials
MDPI., 16(3).
https://doi.org/10.3390/ma16031018
Savić M, Janošević-Ležaić A, Gavrilov N, Pašti I, Nedić Vasiljević B, Krstić J, Ćirić-Marjanović G. Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity. in Materials. 2023;16(3).
doi:10.3390/ma16031018 .
Savić, Marjetka, Janošević-Ležaić, Aleksandra, Gavrilov, Nemanja, Pašti, Igor, Nedić Vasiljević, Bojana, Krstić, Jugoslav, Ćirić-Marjanović, Gordana, "Carbonization of MOF-5/Polyaniline Composites to N,O-Doped Carbon/ZnO/ZnS and N,O-Doped Carbon/ZnO Composites with High Specific Capacitance, Specific Surface Area and Electrical Conductivity" in Materials, 16, no. 3 (2023),
https://doi.org/10.3390/ma16031018 . .

Related items

Showing items related by title, author, creator and subject.

  • Microporous conducting carbonized polyaniline nanorods: Synthesis, characterization and electrocatalytic properties 

    Janošević, Aleksandra; Pasti, Igor; Gavrilov, Nemanja; Mentus, Slavko; Krstić, Jugoslav; Mitrić, Miodrag; Travas-Sejdić, Jadranka; Ćirić-Marjanović, Gordana (Elsevier Science BV, Amsterdam, 2012)
  • Evaluation of kinetic parameters and redox mechanism of quinoxaline at glassy carbon electrode / Određivanje kinetičkih parametara i ispitivanje redoks mehanizma hinoksalina na elektrodi od staklastog ugljenika 

    Aleksić, Mara; Pantić, Jelena; Kapetanović, Vera (Univerzitet u Nišu, Niš, 2014)
  • Tailoring the electrochemical charge storage properties of carbonaceous support by redox properties of heteropoly acids: where does the synergy come from? 

    Bajuk-Bogdanovic, Danica; Holclajtner-Antunović, Ivanka; Jovanović, Zoran; Mravik, Željko; Krstić, Jugoslav; Uskoković-Marković, Snežana; Vujkovic, Milica (Springer, 2019)

DSpace software copyright © 2002-2015  DuraSpace
About the RADaR Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCollectionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About the RADaR Repository | Send Feedback

OpenAIRERCUB