Building QSRR model for RP/WCX HPLC method developmnet
Izgradnja QSRR modela za razvoj RP/WCX HPLC metode
Conference object (Published version)
Metadata
Show full item recordAbstract
Reverse-phase high-performance liquid chromatography (RP-HPLC) is most common in
pharmaceutical analysis and requires significant consumption of toxic mobile phase. Therefore, more
eco-friendly solutions are preferred (1). When it comes to complex samples, RP-HPLC, due to inability
to separate highly polar and charged analytes, often requires multiple unimodal or two-dimensional
HPLC analyzes. The development of mixed-mode liquid chromatography (MMLC), where multiple
separation modalities are incorporated into a single stationary phase, allows the separation of complex
samples in a single run. Numerous factors affect MMLC separation, which makes method development
demanding and limits their practical application (2). Building predictive mathematical models, such as
Quantitative structure-retention relationship (QSRR), could improve method development. QSRR links
the molecules’ retention behavior with their physicochemical properties (molecular descriptors (MD)),
which allows ...retention behavior prediction of untested analytes. Including experimental parameter
values in the QSRR extends the predictability of the model to entire experimental space (3). For model
development purposes, experiments were performed on Thermo’s Acclaim Mixed-Mode WCX-1 (3 μm,
2.1 x 150 mm) column which combines hydrophobic and weak cation exchange (WCX) interactions.
Small diameter column agrees with low mobile phase flow rate (400 μl/min). Mobile phase
composition (acetonitrile content (30 – 50 % (v/v)), pH (3.8 - 5.6) and ionic strength (20 - 40 mM) of
acetic buffer) and column temperature (30 – 38 °C) were varied according to face-centered central
composite design. Retention factor of 33 pharmaceuticals of different pharmacological and ionization
properties were monitored. MDs were calculated using AlvaDesc software. RapidMiner software was
used for obtaining QSRR models. Several machine learning algorithms were considered and the most
informative (gradient boosted trees (GBT) and bagging neural network (BNN)) were selected. Models
were built upon data of 30 analytes, and the remaining three (anion, cation, neutral) were used as a test
set. The most influential MDs for BNN were chosen by forward selection, contrary to GBT which did not
require preselection. For internal model evaluation 10-fold cross-validation was applied, while external
was performed with a test set. Models were compared based on the relative mean square error (RMSE)
of the test set. The BNN (RMSE = 0.104; R2 = 0.976) model outperformed GBT (RMSE = 0.122; R2 =
0.963). The obtained QSRR models showed good potential to predict the retention behavior of
molecules of different ionization abilities in the RP/WCX system. This could improve the development
of MMLC methods and make them more accessible for practical use.
U farmaceutskim analizama najzastupljenija je reverzno-fazna tečna hromatografija
visokih performansi (reverse‐phase high‐performance liquid chromatography (RP-HPLC))
koja iziskuje značajnu potrošnju mobilne faze toksične prirode. Iz tog razloga, teži se
ekološki prihvatljivijim rešenjima (1). Kada su u pitanju kompleksne smeše uzorka, RP-HPLC
zbog nemogućnosti sparacije visoko polarnih i naelektrisanih analita, često zahteva više
unimodalnih ili dvodimenzionalne HPLC analize. Razvoj multimodalne tečne hromatografije
(mixed‐mode liquid chromatography (MMLC)) koja podrazumeva više separacionih
modaliteta inkorporiranih u jednu stacionarnu fazu, omogućava razdvajanje složenih uzorka
jedinstvenom analizom. Brojni faktori utiču na MMLC separaciju, što razvoj metoda čini
zahtevnim i ograničava im praktičnu primenu (2). Izgradnja prediktivnih matematičkih
modela, kao što su modeli kvantitativnog odnos strukture i retencionog ponašanja
(Quantitative structure‐retention relationship... (QSRR)), može ubrzati razvoj metode. QSRR
povezuje fizičko-hemijska svojstva (molekulski deskriptori (MD)) sa retencionim
ponašanjem molekula, što omogućava predviđanje retencionog ponašanja neispitanih
analita. Uključivanje vrednosti eksperimentalnih parametara u QSRR, proširuje prediktivnost
modela na ceo eksperimentalni prostor (3). Podaci o retencionom ponašanju za potrebe
razvoja QSRR modela, dobijeni su upotrebom Thermo Acclaim Mixed‐Mode WCX‐1 (3 μm;
2,1x150 mm) kolone koja uključuje hirdrofobne i interakcije slabe katjonske izmene (weak
cation exchange (WCX)). Malim prečnikom kolone omoguć en je nizak protok i utrošak
mobilne faze (400 μl/min). Sastav mobilne faze (udeo ACN (30 – 50 % (v/v)), pH (3,8 – 5,6) i
jonska jačina (20 – 40 mM) acetatnog pufera) i temperatura kolone (30 – 38 °C) menjani su u
skladu sa centralnim kompozicionim dizajnom – ka centru orijentisanim. Praćen je
retencioni faktor 33 farmaceutska jedinjenja različitih farmakoloških i jonizacionih osobina.
MD su računati AlvaDesc softverom. Za izgradnju QSRR modela RapidMiner softverom
razmatrana je nekolicina algoritama mašinskog učenja, a odabrani su najinformativniji
(gradient boosted trees (GBT) i bagging neural networks (BNN)). Modeli su građeni na osnovu
podataka za 30 analita, dok su preostala tri (anjon, katjon, neutralni) odabrani za test set.
Selekcijom unapred odabrani su najznačajniji MD za izgradnju BNN, za razliku od GBT koji ne
zahteva preselekciju MD. Interna procena modela vršena je desetostrukom unakrsnom
validacijom (10‐fold cross‐validation), dok je eksterna vršena test setom podataka. Modeli su
upoređeni na osnovu relativne srednje kvadratne greške (RMSE) test seta. BNN (RMSE =
0,104; R 2 = 0,976) se pokazao boljim u poređenju sa GBT (RMSE = 0,112; R 2 = 0,963).
Dobijeni QSRR modeli pokazali su dobru sposobnost predviđanja retencionog ponašanja
molekula različitih jonizacionih sposobnosti u RP/WCX sistemu. Tako bi mogao da se
unapredi razvoj MMLC metoda i učini ih pristupačnijim za praktičnu upotrebu.
Source:
Arhiv za farmaciju, 2021, 71, 5 suplement, S120-S121Publisher:
- Savez farmaceutskih udruženja Srbije (SFUS)
Funding / projects:
Note:
- Drugi naučni simpozijum Saveza farmaceutskih udruženja Srbije sa međunarodnim učešćem, 28. 10. 2021. Beograd
Collections
Institution/Community
PharmacyTY - CONF AU - Svrkota, Bojana AU - Krmar, Jovana AU - Protić, Ana AU - Otašević, Biljana PY - 2021 UR - https://farfar.pharmacy.bg.ac.rs/handle/123456789/4678 AB - Reverse-phase high-performance liquid chromatography (RP-HPLC) is most common in pharmaceutical analysis and requires significant consumption of toxic mobile phase. Therefore, more eco-friendly solutions are preferred (1). When it comes to complex samples, RP-HPLC, due to inability to separate highly polar and charged analytes, often requires multiple unimodal or two-dimensional HPLC analyzes. The development of mixed-mode liquid chromatography (MMLC), where multiple separation modalities are incorporated into a single stationary phase, allows the separation of complex samples in a single run. Numerous factors affect MMLC separation, which makes method development demanding and limits their practical application (2). Building predictive mathematical models, such as Quantitative structure-retention relationship (QSRR), could improve method development. QSRR links the molecules’ retention behavior with their physicochemical properties (molecular descriptors (MD)), which allows retention behavior prediction of untested analytes. Including experimental parameter values in the QSRR extends the predictability of the model to entire experimental space (3). For model development purposes, experiments were performed on Thermo’s Acclaim Mixed-Mode WCX-1 (3 μm, 2.1 x 150 mm) column which combines hydrophobic and weak cation exchange (WCX) interactions. Small diameter column agrees with low mobile phase flow rate (400 μl/min). Mobile phase composition (acetonitrile content (30 – 50 % (v/v)), pH (3.8 - 5.6) and ionic strength (20 - 40 mM) of acetic buffer) and column temperature (30 – 38 °C) were varied according to face-centered central composite design. Retention factor of 33 pharmaceuticals of different pharmacological and ionization properties were monitored. MDs were calculated using AlvaDesc software. RapidMiner software was used for obtaining QSRR models. Several machine learning algorithms were considered and the most informative (gradient boosted trees (GBT) and bagging neural network (BNN)) were selected. Models were built upon data of 30 analytes, and the remaining three (anion, cation, neutral) were used as a test set. The most influential MDs for BNN were chosen by forward selection, contrary to GBT which did not require preselection. For internal model evaluation 10-fold cross-validation was applied, while external was performed with a test set. Models were compared based on the relative mean square error (RMSE) of the test set. The BNN (RMSE = 0.104; R2 = 0.976) model outperformed GBT (RMSE = 0.122; R2 = 0.963). The obtained QSRR models showed good potential to predict the retention behavior of molecules of different ionization abilities in the RP/WCX system. This could improve the development of MMLC methods and make them more accessible for practical use. AB - U farmaceutskim analizama najzastupljenija je reverzno-fazna tečna hromatografija visokih performansi (reverse‐phase high‐performance liquid chromatography (RP-HPLC)) koja iziskuje značajnu potrošnju mobilne faze toksične prirode. Iz tog razloga, teži se ekološki prihvatljivijim rešenjima (1). Kada su u pitanju kompleksne smeše uzorka, RP-HPLC zbog nemogućnosti sparacije visoko polarnih i naelektrisanih analita, često zahteva više unimodalnih ili dvodimenzionalne HPLC analize. Razvoj multimodalne tečne hromatografije (mixed‐mode liquid chromatography (MMLC)) koja podrazumeva više separacionih modaliteta inkorporiranih u jednu stacionarnu fazu, omogućava razdvajanje složenih uzorka jedinstvenom analizom. Brojni faktori utiču na MMLC separaciju, što razvoj metoda čini zahtevnim i ograničava im praktičnu primenu (2). Izgradnja prediktivnih matematičkih modela, kao što su modeli kvantitativnog odnos strukture i retencionog ponašanja (Quantitative structure‐retention relationship (QSRR)), može ubrzati razvoj metode. QSRR povezuje fizičko-hemijska svojstva (molekulski deskriptori (MD)) sa retencionim ponašanjem molekula, što omogućava predviđanje retencionog ponašanja neispitanih analita. Uključivanje vrednosti eksperimentalnih parametara u QSRR, proširuje prediktivnost modela na ceo eksperimentalni prostor (3). Podaci o retencionom ponašanju za potrebe razvoja QSRR modela, dobijeni su upotrebom Thermo Acclaim Mixed‐Mode WCX‐1 (3 μm; 2,1x150 mm) kolone koja uključuje hirdrofobne i interakcije slabe katjonske izmene (weak cation exchange (WCX)). Malim prečnikom kolone omoguć en je nizak protok i utrošak mobilne faze (400 μl/min). Sastav mobilne faze (udeo ACN (30 – 50 % (v/v)), pH (3,8 – 5,6) i jonska jačina (20 – 40 mM) acetatnog pufera) i temperatura kolone (30 – 38 °C) menjani su u skladu sa centralnim kompozicionim dizajnom – ka centru orijentisanim. Praćen je retencioni faktor 33 farmaceutska jedinjenja različitih farmakoloških i jonizacionih osobina. MD su računati AlvaDesc softverom. Za izgradnju QSRR modela RapidMiner softverom razmatrana je nekolicina algoritama mašinskog učenja, a odabrani su najinformativniji (gradient boosted trees (GBT) i bagging neural networks (BNN)). Modeli su građeni na osnovu podataka za 30 analita, dok su preostala tri (anjon, katjon, neutralni) odabrani za test set. Selekcijom unapred odabrani su najznačajniji MD za izgradnju BNN, za razliku od GBT koji ne zahteva preselekciju MD. Interna procena modela vršena je desetostrukom unakrsnom validacijom (10‐fold cross‐validation), dok je eksterna vršena test setom podataka. Modeli su upoređeni na osnovu relativne srednje kvadratne greške (RMSE) test seta. BNN (RMSE = 0,104; R 2 = 0,976) se pokazao boljim u poređenju sa GBT (RMSE = 0,112; R 2 = 0,963). Dobijeni QSRR modeli pokazali su dobru sposobnost predviđanja retencionog ponašanja molekula različitih jonizacionih sposobnosti u RP/WCX sistemu. Tako bi mogao da se unapredi razvoj MMLC metoda i učini ih pristupačnijim za praktičnu upotrebu. PB - Savez farmaceutskih udruženja Srbije (SFUS) C3 - Arhiv za farmaciju T1 - Building QSRR model for RP/WCX HPLC method developmnet T1 - Izgradnja QSRR modela za razvoj RP/WCX HPLC metode VL - 71 IS - 5 suplement SP - S120 EP - S121 UR - https://hdl.handle.net/21.15107/rcub_farfar_4678 ER -
@conference{ author = "Svrkota, Bojana and Krmar, Jovana and Protić, Ana and Otašević, Biljana", year = "2021", abstract = "Reverse-phase high-performance liquid chromatography (RP-HPLC) is most common in pharmaceutical analysis and requires significant consumption of toxic mobile phase. Therefore, more eco-friendly solutions are preferred (1). When it comes to complex samples, RP-HPLC, due to inability to separate highly polar and charged analytes, often requires multiple unimodal or two-dimensional HPLC analyzes. The development of mixed-mode liquid chromatography (MMLC), where multiple separation modalities are incorporated into a single stationary phase, allows the separation of complex samples in a single run. Numerous factors affect MMLC separation, which makes method development demanding and limits their practical application (2). Building predictive mathematical models, such as Quantitative structure-retention relationship (QSRR), could improve method development. QSRR links the molecules’ retention behavior with their physicochemical properties (molecular descriptors (MD)), which allows retention behavior prediction of untested analytes. Including experimental parameter values in the QSRR extends the predictability of the model to entire experimental space (3). For model development purposes, experiments were performed on Thermo’s Acclaim Mixed-Mode WCX-1 (3 μm, 2.1 x 150 mm) column which combines hydrophobic and weak cation exchange (WCX) interactions. Small diameter column agrees with low mobile phase flow rate (400 μl/min). Mobile phase composition (acetonitrile content (30 – 50 % (v/v)), pH (3.8 - 5.6) and ionic strength (20 - 40 mM) of acetic buffer) and column temperature (30 – 38 °C) were varied according to face-centered central composite design. Retention factor of 33 pharmaceuticals of different pharmacological and ionization properties were monitored. MDs were calculated using AlvaDesc software. RapidMiner software was used for obtaining QSRR models. Several machine learning algorithms were considered and the most informative (gradient boosted trees (GBT) and bagging neural network (BNN)) were selected. Models were built upon data of 30 analytes, and the remaining three (anion, cation, neutral) were used as a test set. The most influential MDs for BNN were chosen by forward selection, contrary to GBT which did not require preselection. For internal model evaluation 10-fold cross-validation was applied, while external was performed with a test set. Models were compared based on the relative mean square error (RMSE) of the test set. The BNN (RMSE = 0.104; R2 = 0.976) model outperformed GBT (RMSE = 0.122; R2 = 0.963). The obtained QSRR models showed good potential to predict the retention behavior of molecules of different ionization abilities in the RP/WCX system. This could improve the development of MMLC methods and make them more accessible for practical use., U farmaceutskim analizama najzastupljenija je reverzno-fazna tečna hromatografija visokih performansi (reverse‐phase high‐performance liquid chromatography (RP-HPLC)) koja iziskuje značajnu potrošnju mobilne faze toksične prirode. Iz tog razloga, teži se ekološki prihvatljivijim rešenjima (1). Kada su u pitanju kompleksne smeše uzorka, RP-HPLC zbog nemogućnosti sparacije visoko polarnih i naelektrisanih analita, često zahteva više unimodalnih ili dvodimenzionalne HPLC analize. Razvoj multimodalne tečne hromatografije (mixed‐mode liquid chromatography (MMLC)) koja podrazumeva više separacionih modaliteta inkorporiranih u jednu stacionarnu fazu, omogućava razdvajanje složenih uzorka jedinstvenom analizom. Brojni faktori utiču na MMLC separaciju, što razvoj metoda čini zahtevnim i ograničava im praktičnu primenu (2). Izgradnja prediktivnih matematičkih modela, kao što su modeli kvantitativnog odnos strukture i retencionog ponašanja (Quantitative structure‐retention relationship (QSRR)), može ubrzati razvoj metode. QSRR povezuje fizičko-hemijska svojstva (molekulski deskriptori (MD)) sa retencionim ponašanjem molekula, što omogućava predviđanje retencionog ponašanja neispitanih analita. Uključivanje vrednosti eksperimentalnih parametara u QSRR, proširuje prediktivnost modela na ceo eksperimentalni prostor (3). Podaci o retencionom ponašanju za potrebe razvoja QSRR modela, dobijeni su upotrebom Thermo Acclaim Mixed‐Mode WCX‐1 (3 μm; 2,1x150 mm) kolone koja uključuje hirdrofobne i interakcije slabe katjonske izmene (weak cation exchange (WCX)). Malim prečnikom kolone omoguć en je nizak protok i utrošak mobilne faze (400 μl/min). Sastav mobilne faze (udeo ACN (30 – 50 % (v/v)), pH (3,8 – 5,6) i jonska jačina (20 – 40 mM) acetatnog pufera) i temperatura kolone (30 – 38 °C) menjani su u skladu sa centralnim kompozicionim dizajnom – ka centru orijentisanim. Praćen je retencioni faktor 33 farmaceutska jedinjenja različitih farmakoloških i jonizacionih osobina. MD su računati AlvaDesc softverom. Za izgradnju QSRR modela RapidMiner softverom razmatrana je nekolicina algoritama mašinskog učenja, a odabrani su najinformativniji (gradient boosted trees (GBT) i bagging neural networks (BNN)). Modeli su građeni na osnovu podataka za 30 analita, dok su preostala tri (anjon, katjon, neutralni) odabrani za test set. Selekcijom unapred odabrani su najznačajniji MD za izgradnju BNN, za razliku od GBT koji ne zahteva preselekciju MD. Interna procena modela vršena je desetostrukom unakrsnom validacijom (10‐fold cross‐validation), dok je eksterna vršena test setom podataka. Modeli su upoređeni na osnovu relativne srednje kvadratne greške (RMSE) test seta. BNN (RMSE = 0,104; R 2 = 0,976) se pokazao boljim u poređenju sa GBT (RMSE = 0,112; R 2 = 0,963). Dobijeni QSRR modeli pokazali su dobru sposobnost predviđanja retencionog ponašanja molekula različitih jonizacionih sposobnosti u RP/WCX sistemu. Tako bi mogao da se unapredi razvoj MMLC metoda i učini ih pristupačnijim za praktičnu upotrebu.", publisher = "Savez farmaceutskih udruženja Srbije (SFUS)", journal = "Arhiv za farmaciju", title = "Building QSRR model for RP/WCX HPLC method developmnet, Izgradnja QSRR modela za razvoj RP/WCX HPLC metode", volume = "71", number = "5 suplement", pages = "S120-S121", url = "https://hdl.handle.net/21.15107/rcub_farfar_4678" }
Svrkota, B., Krmar, J., Protić, A.,& Otašević, B.. (2021). Building QSRR model for RP/WCX HPLC method developmnet. in Arhiv za farmaciju Savez farmaceutskih udruženja Srbije (SFUS)., 71(5 suplement), S120-S121. https://hdl.handle.net/21.15107/rcub_farfar_4678
Svrkota B, Krmar J, Protić A, Otašević B. Building QSRR model for RP/WCX HPLC method developmnet. in Arhiv za farmaciju. 2021;71(5 suplement):S120-S121. https://hdl.handle.net/21.15107/rcub_farfar_4678 .
Svrkota, Bojana, Krmar, Jovana, Protić, Ana, Otašević, Biljana, "Building QSRR model for RP/WCX HPLC method developmnet" in Arhiv za farmaciju, 71, no. 5 suplement (2021):S120-S121, https://hdl.handle.net/21.15107/rcub_farfar_4678 .