FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Artificial neural networks in the modeling and optimization of aspirin extended release tablets with Eudragit L 100 as matrix substance

Authorized Users Only
2003
Authors
Ibrić, Svetlana
Jovanović, M
Đurić, Zorica
Parojčić, Jelena
Petrović, Slobodan D.
Solomun, Ljiljana
Stupar, Biljana
Article (Published version)
Metadata
Show full item record
Abstract
The purpose of the present study was to model the effects of the concentration of Eudragit L 100 and compression pressure as the most important process and formulation variables on the in vitro release profile of aspirin from matrix tablets formulated with Eudragit L 100 as matrix substance and to optimize the formulation by artificial neural network. As model formulations, 10 kinds of aspirin matrix tablets were prepared. The amount of Eudragit L 100 and the compression pressure were selected as causal factors. In vitro dissolution time profiles at 4 different sampling times were chosen as responses. A set of release parameters and causal factors were used as tutorial data for the generalized regression neural network (GRNN) and analyzed using a computer. Observed results of drug release studies indicate that drug release rates vary widely between investigated formulations, with a range of 5 hours to more than 10 hours to complete dissolution. The GRNN model was optimized. The root me...an square value for the trained network was 1.12%, which indicated that the optimal GRNN model was reached. Applying the generalized distance function method, the optimal tablet formulation predicted by GRNN was with 5% of Eudragit L 100 and tablet hardness 60N. Calculated difference (f1 2.465) and similarity (f2 85.61) factors indicate that there is no difference between predicted and experimentally observed drug release profiles for the optimal formulation. This work illustrates the potential for an artificial neural network, GRNN, to assist in development of extended release dosage forms.

Keywords:
Artificial neural network / Aspirin / Controlled release / Eudragit L 100 / Matrix tablets
Source:
AAPS PharmSciTech, 2003, 4, 1
Publisher:
  • AAPS PharmSci Editorial Office

DOI: 10.1208/pt040109

ISSN: 1530-9932

Scopus: 2-s2.0-0141576818
[ Google Scholar ]
55
URI
http://farfar.pharmacy.bg.ac.rs/handle/123456789/469
Collections
  • Radovi istraživača / Researchers’ publications
Institution
Pharmacy

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB