# Reactive organoallyl species generated from aryl halides and allene: allylation of $\alpha, \beta$-unsaturated aldehydes and cyclic ketones employing $\mathrm{Pd} /$ In transmetallation processes 

Laura A.T. Cleghorn ${ }^{\text {a }}$, Ronald Grigg ${ }^{\text {a,* }}$, Vladimir Savic ${ }^{\text {b,* }, ~ M i l e n a ~ S i m i c ~}{ }^{\text {b }}$<br>${ }^{a}$ Molecular Innovation, Diversity and Automated Synthesis (MIDAS) Centre, Department of Chemistry, Leeds University, Woodhouse Lane, Leeds LS29jT, UK<br>${ }^{\mathrm{b}}$ Department of Organic Chemistry, Faculty of Pharmacy, Belgrade University, Vojvode Stepe 450, 11000 Belgrade, Serbia

## A R T I C L E I N F O

## Article history:

Received 10 April 2008
Received in revised form 7 June 2008
Accepted 26 June 2008
Available online 28 June 2008


#### Abstract

Allylation of $\alpha, \beta$-unsaturated aldehydes and cyclic ketones promoted by Pd/In transmetallation processes has been studied. The unsaturated aldehydes underwent regioselective 1,2-addition to afford secondary homoally alcohols. The reactions have been performed using $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ as catalytic system and metallic indium affording the products in good yields. The same transformation with unsaturated ketones proved to be less efficient, while saturated cyclic ketones delivered generally excellent yields in the presence of CuI. In these latter processes the presence of a distal heteroatom influences the reaction rate.


© 2008 Elsevier Ltd. All rights reserved.

## 1. Introduction

Synthetic methodologies based on palladium have become indispensable for the preparation of a wide range of organic compounds. ${ }^{1}$ The electrophilicity of $\pi$-allylpalladium species and the ability to finely tune their reactivity has led to the development of a plethora of very efficient synthetic procedures. ${ }^{2}$ Occasional reports of $\pi$-allylpalladium(II) species displaying nucleophilic properties have appeared, which invariably involve intramolecular processes and, which merit further study. ${ }^{3}$ In recent years, transmetallation processes of Pd-intermediates have been intensively studied. ${ }^{4}$ Generally, these transformations provide an access to nucleophilic organometallic species generated from electrophilic organopalladium intermediates. Various procedures have been developed employing a range of metals/metal salts such as: $\mathrm{Zn}, \mathrm{Et}_{2} \mathrm{Zn}, \mathrm{Et}_{3} \mathrm{~B}$, $\mathrm{SnX}_{2}, \mathrm{Et}_{2} \mathrm{AlSnBu}_{3}, \mathrm{SmI}_{2}$, In and $\operatorname{InX} X_{\mathrm{n}} .{ }^{4}$ Particularly appealing is the use of indium in these processes ${ }^{5}$ as the metal has a low oxidation potential, is not affected by water or alkali, does not form oxides when exposed to air and is non-toxic. ${ }^{6}$ Consequently, it is being increasingly used in transmetallation processes involving Pd.
$\pi$-Allylpalladium(II) intermediates can be generated in different ways, most frequently from dienes, allenes and allyl acetates or related compounds. The advantage of the former two protocols is

[^0]that they permit concomitant regioselective addition of further functionality as illustrated by Scheme 1 for allene.


Scheme 1.
The $\pi$-allylpalladium(II) intermediates undergo a reductive transmetallation in presence of indium, creating an allylindium and regenerating the $\operatorname{Pd}(0)$-catalyst.

The in situ formed organoindium intermediate reacts with an electrophilic multiple bond to afford the final product. The process outlined in Scheme 1 has proved to be very efficient and has been applied in stereoselective synthesis of amines ${ }^{7}$ and both $\alpha$ - and $\beta$-aminoacids. ${ }^{8}$ Recently we have shown that additives, such as secondary amines, CuI or ascorbic acid have a beneficial effect on cascades involving allene/ArX as allyl precursors by shortening the reaction time for some less reactive electrophilic multiple bonds and increasing the yields. ${ }^{9}$

In this paper, we discuss further extensions of this methodology.

## 2. Results and discussion

1,2-Allylation of $\alpha, \beta$-unsaturated aldehydes is synthetically useful transformation, which generates unsaturated secondary alcohols, Scheme 2. It suffers, in particular, from a lack of readily available allylating reagents with $\mathrm{C}(2)$ substituents. The allene/aryl or vinyl halide strategy overcomes this difficulty. The 1,5 -diene products 3 potentially may undergo 3,3-sigmatropic rearrangement to afford $\delta$-unsaturated aldehydes, providing further diversity and synthetic oportunities. ${ }^{10}$


Scheme 2.
The allylation processes, outlined in Scheme 2, were studied under our typical conditions employing $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ as a catalytic system and 1.5 mol equiv of In. Current evidence supports the involvement of $\operatorname{In}(\mathrm{I})$ allyl species, ${ }^{11}$ which requires 2 equiv of $\operatorname{In}(0)$ for the reduction of $\operatorname{Pd}(\mathrm{II})$ to $\operatorname{Pd}(0)$ and the detail of this process is unclear. ${ }^{12}$ All reactions were carried out in a Schlenk flask, using DMF as a solvent, at $85^{\circ} \mathrm{C}$. After work-up the products were isolated by flash chromatography on silica gel.

The initial $\pi$-allylpalladium intermediate is formed via the oxidative addition of $\operatorname{Pd}(0)$ to the aryl halide followed by regioselective reaction with allene. The following step, the reductive transmetallation involving indium, generates the allylindium species and concomitantly regenerates $\operatorname{Pd}(0)$. The nucleophilic allylindium reacts by 1,2 -addition to the $\alpha, \beta$-unsaturated aldehyde to afford $\mathbf{3}$ in $61-76 \%$ yield (Table 1). The observed regioselectivity is in accordance with the general reactivity of allylindium intermediates, which favour 1,2 - over 1,4 -addition. The latter pathway has been observed in the case of highly activated double bonds ${ }^{13 \mathrm{a}}$ or when tetraorganoindium ate complexes are employed as reactants. ${ }^{13 \mathrm{~b}}$ In addition, formal 1,4-addition was observed when $\mathrm{Me}_{2} \mathrm{~S}$ and TBSOTf were used as coreactants. ${ }^{13 \mathrm{c}}$ The reaction cascade depicted by Scheme 2 and Table 1 does not seem to be significantly affected by the electronic properties of the reactants. Thus, both, $\beta$-alkyl and $\beta$-aryl enones react while electron rich and electron deficient aryl halides afford products in comparable yields. The potential dehydratation of diene to the conjugated triene did not significantly interfere with the reaction.

The potential for $\mathbf{3}$ to undergo 3,3-sigmatropic rearrangement was demonstrated using compound 3a, which upon heating in N -methylpyrrolidinone (NMP) afforded unsaturated aldehyde 4 in $60 \%$ yield (Scheme 3).

We have also attempted to use $\alpha, \beta$-unsaturated ketones in place of aldehydes. Ketones have been used before in allylation procedures employing indium, but generally the scope of $\mathrm{Pd} / \mathrm{In}$ transmetallation methodology in these processes was not fully investigated. In our hands, the use of methyl vinylketone resulted in very low conversion (Scheme 4), in the absence of additives.

Longer reaction time did not affect the yield significantly, neither did a range of different additives such as piperidine and CuI. However, diene $\mathbf{6}$ was shown to be more reactive in 3,3-sigmatropic

Table 1
Allylation of $\alpha, \beta$-unsaturated aldehydes ${ }^{\text {a }}$
Entry Aldehyde 1 Aryl halide

[^1]rearrangement than 3a. While yields for both reactions are comparable, under the same conditions, the reaction time is shorter for diene $\mathbf{6}$ ( 3 h vs 6 h , the reactions were monitored by TLC). This is likely to be the result of the Thorpe-Ingold effect caused by the additional methyl substituent. ${ }^{14}$


Scheme 3.


Scheme 4.

We have also investigated the reactivity of a group of sixmembered cyclic ketones to the Pd/In allylation cascade. Generally, ketones have been used in related processes but the reactivity of 2-arylallyl indium species has been little studied.

A series of cyclic ketones $\mathbf{8}$ were successfully integrated into the $\mathrm{Pd} / \mathrm{In}$ cascade reaction affording tertiary alcohols in moderate to good yields, Scheme 5, Table 2. Under optimised conditions, the reaction employed $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{TFP}$ (trifurylphosphine) catalytic system and CuI as an additive, which is essential to obtain the products in good yields.


Scheme 5.
Cyclic ketones, such as cyclohexanone or heteroatom substituted cyclohexanones, afforded the products in the reaction with various aryl iodides in comparable yields.

The pyran $\mathbf{8 a}$ and thiopyran $\mathbf{8 b}$ reacted much faster ( 3 h ) than cyclohexanone ( 19 h ) or the N -substituted piperidone 8 c ( 24 h ). This trend did not correlate with the IR stretching frequency or the ${ }^{13} \mathrm{C}$ chemical shift of the $\mathrm{C}=\mathrm{O}$ moiety of the ketone. It is not clear, which step, Pd or In promoted, is influenced by the heteroatom. If it is the latter one, the transition state may involve chelation of allyl-In by the heteroatom via the boat or the twisted boat conformation of the six-membered ring (Fig. 1). This would increase the polarisation of the carbonyl group making it more reactive as well as providing a lower energy, structured, transition state. Some ketones additionally activated by electron withdrawing substituents are known to be reactive in related processes. ${ }^{9}$ In case of the piperidone derivative this transition state would involve the carbamate oxygen rather than N -atom, creating the eight-membered chelate. Although known for many metals, these chelates are generally considered less favoured than their five- or six-membered equivalents. ${ }^{15}$ The coordinating ability of DMF, used as a solvent, may suppress formation of the eight-membered cyclic transition state. In addition, inspection of molecular models suggested that the keto and the carbamate oxygen are not ideally positioned to allow formation of the chelate. Alternatively, the heteroatom may help solubilising indium. This would suggest that additives other than those already studied ${ }^{9}$ may be beneficial. ${ }^{16}$ The observed effect remains to be studied in more detail.

Table 2
Allylation of cyclic ketones ${ }^{\text {a }}$

| Entry | Ketone 8 | Aryl halide 9 | Product | $\begin{aligned} & \text { Yield }^{\text {b }} \\ & \text { (\%) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| a |  |  |  <br> 10a | 81 |
| b |  |  |  | 64 |
| c |  |  |  | 63 |
| d |  |  |  | 58 |
| e |  |  |  | 65 |
| f |  |  |  | 84 |
| g |  |  |  | 92 |
| h |  |  |  | 47 |
| i |  |  |  | $77^{\text {c }}$ |
| j |  |  |  | $61^{\text {c }}$ |
| k |  |  |  | $58^{\text {c }}$ |
| 1 |  |  |  | $72^{\text {c }}$ |
| m |  |  |  | $94^{\text {d }}$ |
| n |  |  |  | $88^{\text {d }}$ |

[^2]

Figure 1.

In conclusion, it has been shown that $\alpha, \beta$-unsaturated aldehydes efficiently participate in the $\mathrm{Pd} / \mathrm{In}$ promoted allylation processes affording exclusively products of 1,2-addition. Related unsaturated ketones are less reactive and afford the product but with a poor conversion. On the other hand cyclic saturated ketones under optimised conditions, in the presence of CuI, proved to be a good substrates for these transformations yielding the products in good yields.

## 3. Experimental

### 3.1. General

Nuclear magnetic resonance spectra were recorded using Bruker DPX300 and DRX500 MHz spectrometers. Chemical shifts are reported in parts per million ( $\delta$ ) relative to the internal reference tetramethylsilane. Unless otherwise specified, NMR spectra were recorded in $\mathrm{CDCl}_{3}$ at room temperature. Mass spectra were recorded using a micromass ZMD 2000 using electrospray ionisation. Infrared spectra were recorded using a Perkin-Elmer FTIR spectrometer. Microanalysis was performed using a Carlo-Erba 1108 elemental analyser. Chromatography columns were prepared using Fisher Chemicals 60A 35-70 $\mu \mathrm{m}$ silica gel. Unless otherwise stated, all reagents were obtained from commercial suppliers and used without further purification.

### 3.2. General procedure for Pd/In mediated allylation of unsaturated aldehydes

Aryl iodide ( 1.4 mmol ), aldehyde ( 1.4 mmol ), indium powder ( 100 mesh, 1.5 equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}(0.14 \mathrm{mmol}), \mathrm{PPh}_{3}(0.28 \mathrm{mmol})$ and DMF ( 10 mL ) were added sequentially to a Schlenk tube, which was then sealed, subjected to two freeze/pump/thaw cycles followed by the addition of allene gas ( $\sim 1 \mathrm{bar}$ ). The tube was allowed to warm to room temperature and then heated at $85^{\circ} \mathrm{C}$ for 12 h before cooling to room temperature and venting. $\mathrm{Et}_{2} \mathrm{O}(40 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}$ ( 10 mL ) were added and the mixture was stirred for 20 min , the aqueous layer separated and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ extracts were washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$, the organic phase dried over $\mathrm{MgSO}_{4}$, filtered and the filtrate evaporated under reduced pressure. The crude residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petrol ether/ $\mathrm{Et}_{2} \mathrm{O}$ ) to afford the product.

### 3.2.1. (E)-2-[4-(Trifluoromethyl)phenyl]hepta-1,5-dien-4-ol (3a)

 Isolated as a pale yellow oil (72\%).$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.59(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 7.52(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 5.62(\mathrm{~m}, 1 \mathrm{H}$, vinyl-H), $5.50\left(\mathrm{~m}, 1 \mathrm{H}\right.$, vinyl-H), $5.44\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.27(\mathrm{~s}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 4.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-\mathrm{COH}), 2.75\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl), $1.56(\mathrm{~m}, 3 \mathrm{H}$, vinyl $-\mathrm{CH}_{3}$ ). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 144.50,144.13,133.16,127.41,126.63$, $125.44,125.34,125.29,117.24\left(\mathrm{ArC}, \mathrm{C}=, \mathrm{CH}_{2}=, \mathrm{CF}_{3}\right), 70.88(\mathrm{COH})$, $43.51\left(\mathrm{CH}_{2}\right)$, $34.39\left(\mathrm{CH}_{2}\right.$ allyl), 17.24 (vinyl- $\mathrm{CH}_{3}$ ). HRMS (CI) m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}+\mathrm{Na}$ 279.0967, found 279.096.
3.2.2. (E)-2-(Pyridin-3-yl)hepta-1,5-dien-4-ol (3b) Isolated as a pale yellow oil (63\%).
$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 8.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 8.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{ArH}), 7.70(\mathrm{~d}, 1 \mathrm{H}$, ArH), 7.27 (t, 1H, ArH), $5.63(\mathrm{~m}, 1 \mathrm{H}$, vinyl-H), $5.50(\mathrm{~m}, 1 \mathrm{H}$, vinyl-H), $5.43\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.27\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.11(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.73(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$ allyl), 1.66 (m, 3H, vinyl $-\mathrm{CH}_{3}$ ). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 149.08,148.10$,
142.63, 136.80, 133.88, 133.57, 127.77, 123.56, 117.24 (ArC, $\mathrm{C}=$, $\mathrm{CH}_{2}=$ ), $71.24(\mathrm{COH}), 43.56\left(\mathrm{CH}_{2}\right.$ allyl), 18.00 (vinyl $\left.-\mathrm{CH}_{3}\right) . \nu_{\text {max }}$ (film)/ $\mathrm{cm}^{-1}$ : 3348 (OH), 1673, 1628, 1415, 1026, 720. HRMS (CI) m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}$ 190.1226, found 190.1231.

### 3.2.3. (E)-2-p-Tolylhepta-1,5-dien-4-ol (3c)

Isolated as a pale yellow oil ( $76 \%$ ).
$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.29(\mathrm{~d}, 2 \mathrm{H}, \operatorname{ArH}), 7.15(\mathrm{~d}, 2 \mathrm{H}, \operatorname{ArH}), 5.61(\mathrm{~m}, 1 \mathrm{H}$, vinyl-H), $5.52\left(\mathrm{~m}, 1 \mathrm{H}\right.$, vinyl-H), $5.38\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.13\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right)$, $4.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.76\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl), $2.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl), 2.35(s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ar}$ ), 1.56 ( $\mathrm{s}, 3 \mathrm{H}$, vinyl-CH3). $\delta_{\mathrm{C}}(75 \mathrm{MHz}$ ): $145.20,137.99$, 137.87,133.68,129.51,127.30, 126.47 ( $\mathrm{ArC}, \mathrm{C}=$ ), $115.05\left(\mathrm{CH}_{2}=\right), 70.99$ $(\mathrm{COH}), 44.29\left(\mathrm{CH}_{2}\right.$ allyl), $21.49\left(\mathrm{CH}_{3} \mathrm{Ar}\right), 18.05$ (vinyl- $\left.\mathrm{CH}_{3}\right) . \nu_{\max }$ (film)/ $\mathrm{cm}^{-1}: 3368(\mathrm{OH}), 3083$ (ArH), 1625, 1513, 1447, 1030, 825. HRMS (CI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}+\mathrm{Na} 225.1250$, found 225.1252.

### 3.2.4. (E)-2-[4-(1H-Pyrrol-1-yl)phenyl]hepta-1,5-dien-4-ol (3d)

Isolated as a pale yellow oil ( $75 \%$ ), which solidified upon standing, $\mathrm{mp} 81-82^{\circ} \mathrm{C}$.
$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.47$ (d, 2H, ArH), 7.37 (d, 2H, ArH), 7.10 (s, 2H, ArH), 6.35 (s, 2H, ArH), $5.50(\mathrm{~m}, 1 \mathrm{H}$, vinyl-H), 5.45 (m, 1H, vinyl-H), $5.42\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.19\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.10(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.76(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$ allyl), $2.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl), 1.56 (s, 3 H , vinyl $-\mathrm{CH}_{3}$ ). $\delta_{\mathrm{C}}$ ( 75 MHz ): 144.04, 140.09, 137.93, 133.24, 127.41, 127.16, 120.27, 119.21, 115.36, $110.53\left(\mathrm{ArC}, \mathrm{C}=\mathrm{C}, \mathrm{CH}_{2}=\right), 70.79(\mathrm{COH}), 43.70\left(\mathrm{CH}_{2}\right.$ allyl), 17.65 (vinyl- $\mathrm{CH}_{3}$ ). HRMS (CI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}$ 254.1539, found 254.1539 .

### 3.2.5. (E)-2-(Thiophen-3-yl)hepta-1,5-dien-4-ol (3e)

Isolated as a pale yellow oil (65\%).
$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 5.69(\mathrm{~m}, 1 \mathrm{H}$, vinyl-H), $5.55(\mathrm{~m}$, 1 H , vinyl-H), $5.48\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.12\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.24(\mathrm{~m}, 1 \mathrm{H}$, CH ), $2.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl), 2.59 (dd, $1 \mathrm{H}, \mathrm{CH}_{2}$ allyl, $J 14.1$ and 8.6 Hz ), 1.56 (s, 3H, vinyl- $\mathrm{CH}_{3}$ ). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 141.95,139.33,133.29,127.07$, 126.62, 125.82, 120.78, 114.00 ( $\mathrm{ArC}, \mathrm{C}=\mathrm{C}, \mathrm{CH}_{2}=$ ), $70.84(\mathrm{COH})$, $44.07\left(\mathrm{CH}_{2}\right.$ allyl), 17.67 (vinyl- $\mathrm{CH}_{3}$ ). $\nu_{\max }($ film $) / \mathrm{cm}^{-1}: 3390(\mathrm{OH})$, $3103,1625,1446,1028,996$. HRMS (CI) $m / z$ calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{OS}+\mathrm{Na}$ 217.0658, found 217.0667.
3.2.6. (E)-1-Phenyl-5-p-tolylhexa-1,5-dien-3-ol (3f)

Isolated as a pale yellow oil (74\%).
$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.34-7.25(\mathrm{~m}, 9 \mathrm{H}, \mathrm{ArH}), 6.54(\mathrm{~d}, 1 \mathrm{H}$, vinyl-H, $J$ 15.9 Hz ), 6.21 (dd, 1 H , vinyl-H, J 15.9 and 6.4 Hz ), 5.40 (s, 1 H , $\left.=\mathrm{CH}_{2}\right), 5.17\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.90\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl $)$, 2.78 ( $\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}$ allyl), 2.35 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ar}$ ). $\delta_{\mathrm{C}}(75 \mathrm{MHz}$ ): 144.56, 137.61, 137.53, 136.78, 131.61, 130.20, 129.21, 128.53, 127.59, 126.48, 126.21 ( $\mathrm{ArC}, \mathrm{C}=$ ), $115.06\left(\mathrm{CH}_{2}=\right), 70.66(\mathrm{COH}), 44.00\left(\mathrm{CH}_{2}\right.$ allyl), $21.11\left(\mathrm{CH}_{3} \mathrm{Ar}\right) . \nu_{\max }($ film $) / \mathrm{cm}^{-1}: 3368(\mathrm{OH}), 3082(\mathrm{ArH}), 3025,1513$, 1448, 966,825 . HRMS (CI) $m / z$ calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{O}+\mathrm{Na} 287.1406$, found 287.1400.

### 3.2.7. (E)-5-(3,4-Dichlorophenyl)-1-phenylhexa-1,5-dien-3-ol (3g)

 Isolated as a pale yellow oil (61\%).$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.50$ (s, 1H, ArH), 7.40 (d, 1H, ArH), 7.32 (m, 5H, ArH), 7.23 (d, 1H, ArH), 6.52 (d, 1H, vinyl-H, J 15.9 Hz ), 6.18 (dd, 1H, vinyl-H, J 15.9 and 6.6 Hz$), 5.41\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.26\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right)$, $4.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 142.83$, $140.89,136.45,132.64,131.64,131.21,130.75,130.37,128.61,128.35$, 127.82, 126.49, 125.68 ( $\mathrm{ArC}, \mathrm{C}=$ ), $117.18\left(\mathrm{CH}_{2}=\right), 70.91(\mathrm{COH}), 43.47$ $\left(\mathrm{CH}_{2}\right.$ allyl), $21.11\left(\mathrm{CH}_{3} \mathrm{Ar}\right) . \nu_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}: 3368(\mathrm{OH}), 3083(\mathrm{ArH})$, $1473,1028,966$. HRMS (CI) $m / z$ calcd for $\mathrm{C}_{18} \mathrm{H}_{16}^{35} \mathrm{Cl}_{2} \mathrm{O}+\mathrm{Na} 341.0470$, found 341.0465 .
3.2.8. (E)-Methyl 4-(4-hydroxy-6-phenylhexa-1,5-dien-2-yl)benzoate (3h)

Isolated as a pale yellow oil (68\%).
$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 8.01$ (d, 2H, ArH), 7.50 (d, 2H, ArH), 7.30 (m, 5H, ArH), 6.52 (d, 1H, vinyl-H, J 15.9 Hz ), 6.19 (dd, 1H, vinyl-H, J 15.9 and 6.6 Hz$), 5.50\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.31\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.34(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH})$, $3.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 166.84(\mathrm{C}=\mathrm{O}$ ester), 145.26, 144.09, 136.55, 131.32, 130.62, 129.33, 128.57, 127.74, 126.48, 126.33 ( $\mathrm{ArC}, \mathrm{C}=$ ), $117.53\left(\mathrm{CH}_{2}=\right), 70.90(\mathrm{COH}), 52.12$ $\left(\mathrm{CH}_{3}-\mathrm{O}\right), 43.61\left(\mathrm{CH}_{2}\right.$ allyl). $\nu_{\max }($ film $) / \mathrm{cm}^{-1}: 3424(\mathrm{OH}), 1720(\mathrm{C}=\mathrm{O}$ ester), 1607, 1435, 1281, 1118, 966. HRMS (CI) $m / z$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{3}+\mathrm{Na} 331.1305$, found 331.1303.

### 3.2.9. 3-Methyl-5-[4-(trifluoromethyl)phenyl]hexa-1,5-dien-3-ol (6)

Isolated as a pale yellow oil (10\%).
$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.56(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 7.47(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 5.78(\mathrm{dd}, 1 \mathrm{H}$, vinyl-H, J 17.2 and 10 Hz ), $5.43\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.25\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right)$, $5.12\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{CH}_{2}, J 17.2 \mathrm{~Hz}\right), 4.89\left(\mathrm{~d}, 1 \mathrm{H},=\mathrm{CH}_{2}, J 10 \mathrm{~Hz}\right), 2.81(\mathrm{q}, 2 \mathrm{H}$, $\mathrm{CH}_{2}$ ), 1.22 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ). HRMS (CI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}+\mathrm{Na}$ 279.0967, found 279.0949.

### 3.3. General procedure for $\mathbf{3 , 3}$-sigmatropic rearrangement

Unsaturated alcohol ( 0.18 mmol ) was dissolved in N -methylpyrrolidinone ( 3 mL ) and the mixture heated at $180^{\circ} \mathrm{C}$ (oil bath temperature) under $\mathrm{N}_{2}$ atmosphere. The reaction was monitored by TLC and when completed the mixture was allowed to cool to room temperature. $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was then added and the mixture washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$. The ethereal layer was dried over $\mathrm{MgSO}_{4}$, filtered and the filtrate evaporated under reduced pressure. The crude residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, petrol ether $/ \mathrm{Et}_{2} \mathrm{O}$ ) to afford the product.

### 3.3.1. 3-Methyl-5-phenylhex-5-enal (4)

Isolated as a pale yellow oil ( $60 \%$ ).
$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 9.70(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-\mathrm{CO}), 7.59(\mathrm{~d}, 2 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~d}, 2 \mathrm{H}$, ArH), $5.38\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 5.17\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 2.61(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 2.43$ ( $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CO}$ ), $2.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl), $2.13\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl $), 0.94$ (d, $3 \mathrm{H}, \mathrm{CH}_{3}$ ). HRMS (CI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}+\mathrm{Na}$ 279.0967, found 279.0977.

### 3.3.2. 6-Phenylhept-6-en-2-one (7)

Isolated as a pale yellow oil (63\%).
$\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.58$ (d, 2H, ArH), 7.49 (d, 2H, ArH), 5.36 ( $\mathrm{s}, 1 \mathrm{H}$, $\left.=\mathrm{CH}_{2}\right), 5.16\left(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 2.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 2.45\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ allyl), 2.12 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ ), 1.58 (m, $2 \mathrm{H}, \mathrm{CH}_{2}$ ). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 208.43$ $(\mathrm{C}=\mathrm{O}), 146.78,144.50,126.43,125.36,125.30,125.25,114.74$ (ArC, $\left.\mathrm{C}=, \mathrm{CH}_{2}=, \mathrm{CF}_{3}\right), 42.71\left(\mathrm{CH}_{2} \mathrm{CO}\right), 34.39\left(\mathrm{CH}_{2}\right.$ allyl $), 29.99\left(\mathrm{CH}_{3}-\mathrm{CO}\right)$, $22.04\left(\mathrm{CH}_{2}\right)$. HRMS (CI) $\mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{O}+\mathrm{Na} 279.0967$, found 279.0969.

### 3.4. General procedure for $\mathbf{P d} / \mathbf{I n}$ mediated allylation of cyclic ketones

Aryl iodide ( 1.5 mol equiv), cyclic ketone ( 1 mol equiv), indium powder ( 100 mesh, 1.5 mol equiv), $\mathrm{Pd}(\mathrm{OAc})_{2}$ ( 0.1 mol equiv), TFP ( 0.2 mol equiv), CuI ( 0.4 mol equiv) and DMF (AR, $10 \mathrm{~mL} / \mathrm{mmol}$ ) were added sequentially to a Schlenk tube, which was then sealed, subjected to two freeze/pump/thaw cycles followed by the addition of allene gas ( $\sim 1 \mathrm{bar}$ ). The tube was allowed to warm to room temperature and then heated at $85^{\circ} \mathrm{C}$ for $3-24 \mathrm{~h}$ (see Table 2) before cooling to room temperature and venting. Ether ( 20 mL ) and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were then added and the mixture stirred for 20 min , the aqueous layer separated and extracted with ether $(3 \times 15 \mathrm{~mL})$ and the combined ether extracts washed with $\mathrm{H}_{2} \mathrm{O}(4 \times 20 \mathrm{~mL})$. The organic phase was dried over $\mathrm{MgSO}_{4}$, filtered and the filtrate evaporated to dryness. The crude residue was purified by column chromatography to afford the alcohol.
3.4.1. 4-(2-Phenylprop-2-en-1-yl)tetrahydro-2H-pyran-4-ol (10a)

Purified by column chromatography (EtOAc, $\mathrm{SiO}_{2}$ ) to afford the product as a colourless oil (81\%).
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}$ found: C, $77.05 ; \mathrm{H}, 8.5 \%$. Required: C, $77.03 ; \mathrm{H}, 8.3 \% . \delta_{\mathrm{H}}$ ( 500 MHz ): 7.42 (d, 2H, ArH, J 7.3 Hz), 7.34 (t, 2H, ArH, J 7.3 Hz), 7.29 (d, 1H, ArH, J 7.3 Hz ), 5.42 (s, 1H, 1a-H), 5.17 (s, 1H, 1b-H), 3.68 (dd, $3 \mathrm{H}, 3,5-$ pyran-H, J 4.2 and 2.3 Hz ), 3.66 (d, 1H, 5-pyran-H, J 2.3 Hz ), 2.76 (s, 2H, 3-H), 1.61 (ddd, 2H, 2-pyran-H, J 14.0, 6.4 and 3.4 Hz ), $1.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$ and 1.36 (dd, 2H, 6-pyran-H, J 14.0 and 2.3 Hz ). $\delta_{\mathrm{C}}$ ( 75 MHz ): $144.81,129.03,128.21$ and $126.84(\mathrm{ArC}), 118.20\left(\mathrm{CH}_{2}\right)$, 69.16, $64.20\left(\mathrm{CH}_{2}\right), 48.85\left(\mathrm{CH}_{2}\right)$ and $38.53\left(\mathrm{CH}_{2}\right) . \nu_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ : 3417 (OH), 3076 (ArH), 2951 and 2862 (CH), 1621 (Ar), 1599, 1572, 1492. m/z (ES $\left.{ }^{+}, \%\right): 242$ ([M+Na], 93), 218 ([M+H], 8), 201 ([M-OH], 100).
3.4.2. 4-[2-(3-Trifluoromethylphenyl)prop-2-en-1-yl] tetrahydro-2H-pyran-4-ol (10b)

Purified by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}, \mathrm{SiO}_{2}\right)$ to afford the product as colourless prisms ( $64 \%$ ), $\mathrm{mp} 39-41^{\circ} \mathrm{C}$.
$\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{2}$ found: $\mathrm{C}, 62.65 ; \mathrm{H}, 5.9 \%$. Required: $\mathrm{C}, 62.93 ; \mathrm{H}, 5.9 \%$. $\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.66$ (s, 1H, 2-ArH), 7.60 (d, 1H, 6-ArH, J 7.7 Hz), 7.54 (d, 1H, 4-ArH, J 7.7 Hz), 7.45 (t, 1H, 5-ArH, J 7.7 Hz), 5.49 (s, 1H, 1a-H), 5.27 (s, 1H, 1b-H), 3.67 (d, 4H, 3,5-pyran-H, J 7.7 Hz), 2.77 (s, 2H, $3-\mathrm{H}), 1.64$ (dt, 2H, 2,6-pyran-H, J 13.6 and 7.7 Hz ), 1.38 (s, 1H, OH) and 1.35 (s, 2H, 2,6-pyran-H). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 143.59$ and 143.46 ( ArC ), $119.82\left(\mathrm{CH}_{2}\right), 69.25,64.06\left(\mathrm{CH}_{2}\right), 48.77\left(\mathrm{CH}_{2}\right), 38.44\left(\mathrm{CH}_{2}\right)$. $\nu_{\max }($ film $) / \mathrm{cm}^{-1}: 3427(\mathrm{OH}), 3082(\mathrm{ArH}), 2953$ and $2869(\mathrm{CH}), 1626$ (Ar), 1489. m/z (ES $\left.{ }^{+}, \%\right): 310$ ([M+Na], 93), 269 ([M-OH], 100).

### 3.4.3. 4-[2-(3-Methoxyphenyl)prop-2-en-1-yl]tetrahydro-2H-pyran-4-ol (10c)

Purified by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}, \mathrm{SiO}_{2}\right)$ to afford the product as a colourless oil (63\%).
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{3}$ found: C, $72.25 ; \mathrm{H}, 8.05 \%$. Required: C, 72.55 ; $\mathrm{H}, 8.12 \%$. $\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.25$ (t, 1H, 5-ArH, J 7.9 Hz ), 6.99 (d, 1H, 6-ArH, J $7.9 \mathrm{~Hz}), 6.94(\mathrm{~s}, 1 \mathrm{H}, 2-\mathrm{ArH}), 6.82$ (dd, 1H, $4-\mathrm{ArH}, J 7.9$ and 2.2 Hz ), $5.43(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{a}-\mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.67(\mathrm{~s}, 4 \mathrm{H}$, 3,5-pyran-H), 2.73 (s, 2H, 3-H), 1.62 (dd, 1H, 2-pyran-H, J 10.2 and $3.4 \mathrm{~Hz}), 1.60(\mathrm{dd}, 1 \mathrm{H}, 6-$ pyran-H, J 6.6 and 3.4 Hz$), 1.48(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$ and 1.37 (d, 2H, 2,6-pyran-H, J 13.5 Hz ). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 160.10,144.69$, 144.08, 130.03, 119.32 and $113.22(\mathrm{ArC}), 112.90\left(\mathrm{CH}_{2}\right), 69.16,64.19$ $\left(\mathrm{CH}_{2}\right), 55.65\left(\mathrm{CH}_{3}\right), 48.94\left(\mathrm{CH}_{2}\right)$ and $38.45\left(\mathrm{CH}_{2}\right) . \nu_{\max }(\mathrm{film}) / \mathrm{cm}^{-1}$ : $3425(\mathrm{OH}), 3081$ (ArH), 2951 and 2866 (CH), 1598, 1579, 1487, 1465, 1427. $\mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}, \%\right): 349$ ([M+H], 10), 231 ([M-OH], 35).

### 3.4.4. 4-[2-(4-Methylphenyl)prop-2-en-1-yl]tetrahydro-2H-pyran-4-ol (10d)

Purified by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}, \mathrm{SiO}_{2}\right)$ to afford the product as a colourless oil (55\%).
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}$ found: $\mathrm{C}, 77.55 ; \mathrm{H}, 8.68 \%$. Required: C, 77.15; H, 8.60\%. $\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.23$ (d, 2H, 2,6-ArH, J 7.9 Hz ), 7.06 (d, 2H, 3,5-ArH, $J 7.9 \mathrm{~Hz}), 5.32(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{a}-\mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}), 3.60-3.58(\mathrm{~m}, 4 \mathrm{H}$, 3,5-pyran-H), 2.66 (s, 2H, 3-H), 2.27 (s, 3H, CH3 ), 1.52 (ddd, 2H, 2,6-pyran-H, J 14.0, 10.3 and 6.5 Hz$), 1.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$ and $1.29(\mathrm{~d}, 2 \mathrm{H}$, 2,6-pyran-H, J 13.9 Hz ). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 143.13,138.12,136.52,128.24$, 125.26, $115.96\left(\mathrm{CH}_{2}\right), 67.64,62.72\left(\mathrm{CH}_{2}\right), 47.36\left(\mathrm{CH}_{2}\right), 37.01\left(\mathrm{CH}_{2}\right)$ and 20.06. $\nu_{\text {max }}($ film $) / \mathrm{cm}^{-1}: 3428(\mathrm{OH}), 3084(\mathrm{ArH}), 2952$ and 2868 (CH), 1622 (Ar), 1512, 1467. m/z (ES $\left.{ }^{+}, \%\right): 218$ ([M+(H-Me)], 86), 177 ([M-(Me+OH)], 100).

### 3.4.5. 4-(2-Phenylprop-2-en-1-yl)tetrahydro-2H-thiopyran-

 4-ol (10e)Purified by column chromatography (9:1 v/v hexane/EtOAc, $\mathrm{SiO}_{2}$ ) to afford the product as a colourless oil (65\%).
$\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{OS}$ found: C, 72.00 ; H, 7.65; S, 13.75\%. Required: C, 71.75 ; H, 7.74; S, 13.68\%. $\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.39$ (d, 2H, ArH, J 7.5 Hz ), 7.33
(t, 2H, ArH, J 7.5 Hz), 7.28 (d, 1H, ArH, J 7.5 Hz ), 5.41 (d, 1H, 1a-H, J 1.1 Hz ), 5.14 (s, 1H, 1b-H), 2.93 (td, 2H, 3,5-thiopyran-H, Jaxax $18.8 \mathrm{~Hz}, J_{\text {gem }} 13.7 \mathrm{~Hz}$ and $J_{\text {axeq }} 1.8 \mathrm{~Hz}$ ), 2.70 (s, 2H, 3-H), 2.35 (d, 2H, 3,5-thiopyran-H, Jgem 13.7 Hz ), 1.77 (d, 2H, 2,6-thiopyran-H, Jgem 14.0 Hz ), 1.65 (td, 2H, 2,6-thiopyran-H, Jgem 14.0 Hz , Jaxax 11.7 Hz and $J_{\text {axeq }} 3.4 \mathrm{~Hz}$ ) and $1.32(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) . \delta_{\mathrm{C}}(75 \mathrm{MHz}): 143.18,141.02$, 127.76 and $125.36(\mathrm{ArC}), 117.02\left(\mathrm{CH}_{2}\right), 68.65,47.68\left(\mathrm{CH}_{2}\right), 37.62$ $\left(\mathrm{CH}_{2}\right)$ and $23.50\left(\mathrm{CH}_{2}\right) \cdot \nu_{\max }($ film $) / \mathrm{cm}^{-1}: 3444(\mathrm{OH}), 3079$ and 3049 (ArH), 3021, 2929 and 2851 (CH), 1709, 1602 (Ar), 1596, 1573, 1493. m/z (EI, \%): 234 ([M], 100).

### 3.4.6. 4-[2-(3,4-Dichlorophenyl)prop-2-en-1-yl]tetrahydro-2H-

 thiopyran-4-ol (10f)Purified by column chromatography ( $1: 1 \mathrm{v} / \mathrm{v}$ hexane $/ \mathrm{Et}_{2} \mathrm{O}, \mathrm{SiO}_{2}$ ) to afford the product as yellow prisms ( $84 \%$ ), mp $44-45^{\circ} \mathrm{C}$.
$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{OS}$ found: $\mathrm{C}, 55.35 ; \mathrm{H}, 5.15 ; \mathrm{S}, 10.30 \%$. Required: C, $55.45 ; \mathrm{H}, 5.32 ; \mathrm{S}, 10.57 \%$. $\delta_{\mathrm{H}}(500 \mathrm{MHz}$ ): 7.49 (d, 1H, 2-ArH, J 2.0 Hz ), 7.40 (t, 1H, 5-ArH, J 8.3 Hz ), 7.24 (dd, 1H, 6-ArH, J 8.3 and 2.0 Hz ), 5.44 (d, 1H, 1a-H, J 1.1 Hz ), 5.20 (s, 1H, 1b-H), 2.92 (td, 2H, 3,5-thiopyran-H, $J_{\text {gem }} 13.9 \mathrm{~Hz}, J_{\text {axax }} 11.9 \mathrm{~Hz}$ and $J_{\text {axeq }} 2.4 \mathrm{~Hz}$ ), 2.66 ( $\mathrm{s}, 2 \mathrm{H}$, 3-H), 2.33 (d, 2H, 3,5-thiopyran-H, Jgem 13.9 Hz ), 1.76 (d, 2H, 2,6-thiopyran-H, $J_{g e m} 13.9 \mathrm{~Hz}$ ), 1.64 (td, 2H, 2,6-thiopyran-H, Jgem $13.9 \mathrm{~Hz}, J_{\text {axax }} 11.8 \mathrm{~Hz}$ and $J_{\text {axeq }} 3.4 \mathrm{~Hz}$ ) and $1.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) . \delta_{\mathrm{C}}$ $(75 \mathrm{MHz}): 142.70,142.59,130.87,128.67$ and 126.08 ( ArC ), 119.89 $\left(\mathrm{CH}_{2}\right), 70.28\left(\mathrm{CH}_{2}\right), 49.07\left(\mathrm{CH}_{2}\right), 39.11\left(\mathrm{CH}_{2}\right)$ and 24.49. $\nu_{\text {max }}$ (film)/ $\mathrm{cm}^{-1}: 3429(\mathrm{OH}), 3082(\mathrm{ArH}), 2929$ and $2846(\mathrm{CH}), 1648,1618$, $1602,1547,1474 . \mathrm{m} / \mathrm{z}(\mathrm{EI}, \%): 306\left(\left[\left({ }^{37} \mathrm{Cl}\right) \mathrm{M}\right], 14\right), 304\left(\left[\left({ }^{35} \mathrm{Cl}\right)+\left({ }^{37} \mathrm{Cl}\right)\right.\right.$ M], 73), 302 ([( $\left.\left.\left.{ }^{35} \mathrm{Cl}\right) \mathrm{M}\right], 100\right)$.

### 3.4.7. 4-[2-(4-Methoxyphenyl)prop-2-en-1-yl]tetrahydro-2H-thiopyran-4-ol (10g)

Purified by column chromatography ( $1: 1 \mathrm{v} / \mathrm{v}$ hexane $/ \mathrm{Et}_{2} \mathrm{O}, \mathrm{SiO}_{2}$ ) to afford the product as a yellow oil ( $92 \%$ ).
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{~S}$ found: C, 68.15; H, 7.70; S, 12.90\%. Required: C, 68.14; H, 7.62; S, 12.13\%. $\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.34$ (d, 2H, 2,6-ArH, J 8.7 Hz ), 6.86 (d, 2H, 3,5-ArH, J 8.7 Hz ), 5.35 (d, 1H, 1a-H, J 1.1 Hz ), 5.06 (s, 1H, 1bH), 3.82 (s, 3H, OCH 3 ), 2.91 (td, 2H, 3,5-thiopyran-H, Jgem 13.7 Hz , $J_{\text {axax }} 11.9 \mathrm{~Hz}$ and $J_{\text {axeq }} 2.1 \mathrm{~Hz}$ ), 2.68 (s, 2H, 3-H), 2.32 (d, 2H, 3,5-thiopyran-H, Jgem 13.7 Hz ), 1.78 (d, 2H, 2,6-thiopyran-H, $J_{g e m}$ 13.9 Hz ), 1.63 (td, 2H, 2,6-thiopyran-H, $J_{g e m} 13.9 \mathrm{~Hz}, J_{\text {axax }} 11.8 \mathrm{~Hz}$ and $J_{\text {axeq }} 3.3 \mathrm{~Hz}$ ) and $1.38(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) . \delta_{\mathrm{C}}(75 \mathrm{MHz}): 159.72,143.93$, 134.76 and $116.85(\mathrm{ArC}), 114.36\left(\mathrm{CH}_{2}\right), 70.09,55.70\left(\mathrm{CH}_{3}\right), 49.12$ $\left(\mathrm{CH}_{2}\right), 39.18\left(\mathrm{CH}_{2}\right)$ and $24.62\left(\mathrm{CH}_{2}\right) . \nu_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1}: 3450(\mathrm{OH})$, 3076 (ArH), 2932 and 2835 (CH), 1607 (Ar), 1572, 1511, 1441. m/z (ES ${ }^{+}$\%): 265 ([M+H], 100), 249 ([M-OH], 43).
3.4.8. 4-[2-(4-Methylphenyl)prop-2-en-1-yl]tetrahydro-2H-thiopyran-4-ol (10h)

Purified by column chromatography ( $1: 1 \mathrm{v} / \mathrm{v}$ hexane $/ \mathrm{Et}_{2} \mathrm{O}, \mathrm{SiO}_{2}$ ) to afford the product as a yellow oil (47\%).
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{OS}$ found: C, 72.5 ; H, 8.1; S, 12.75\%. Required: C, 72.5 ; H, 8.1; S, 12.91\%. $\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.29$ (d, 2H, 2,6-ArH, J 8.0 Hz ), 7.14 (d, $2 \mathrm{H}, 3,5-\mathrm{ArH}, J 8.0 \mathrm{~Hz}), 5.38$ (d, 1H, 1a-H, J 1.1 Hz ), 5.09 (s, 1H, 1b-H), 2.90 (td, 3,5-thiopyran-H, Jgem $14.3 \mathrm{~Hz}, J_{\text {axax }} 11.4 \mathrm{~Hz}$ and Jaxeq 2.4 Hz ), 2.69 (s, 2H, 3-H), 2.34 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ ), 2.30 (d, 2H, 3.5-H, Jgem 14.3 Hz ), 1.77 (d, 2H, 2,6-H, Jgem 14.0 Hz ), 1.63 (td, 2H, 2,6-H, Jgem $14.0 \mathrm{~Hz}, J_{\text {axax }} 11.7 \mathrm{~Hz}$ and $J_{\text {axeq }} 3.3 \mathrm{~Hz}$ ) and $1.36(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}) . \delta_{\mathrm{C}}$ $(75 \mathrm{MHz}): 144.10,139.14,137.65,129.33$ and $126.29(\mathrm{ArC}), 117.18$ $\left(\mathrm{CH}_{2}\right), 69.69,48.71\left(\mathrm{CH}_{3}\right), 38.77\left(\mathrm{CH}_{2}\right), 24.26\left(\mathrm{CH}_{2}\right)$ and $21.06\left(\mathrm{CH}_{2}\right)$. $\nu_{\text {max }}($ film $) / \mathrm{cm}^{-1}: 3453(\mathrm{OH}), 3082$ and $3021(\mathrm{ArH})$, 2920 and 2851 (CH), 1709, 1651, 1620, 1563. m/z (ES $\left.{ }^{+}, \%\right): 249$ ([M+H], 71).

[^3]$\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{3}$ found: $\mathrm{C}, 70.30 ; \mathrm{H}, 7.90 ; \mathrm{N}, 4.85 \%$. Required: $\mathrm{C}, 70.56$; $\mathrm{H}, 8.01 ; \mathrm{N}, 4.84 \% . \delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.39(\mathrm{~d}, 2 \mathrm{H}, 2,6-\mathrm{PhH}, J 7.1 \mathrm{~Hz}), 7.33$ (t, 2H, 3,5-PhH, J 7.1 Hz ), 7.27 (t, 1H, 4-PhH, J 7.1 Hz), 5.42 (d, 1H, $1 \mathrm{a}-\mathrm{H}, J 1.5 \mathrm{~Hz}$ ), $5.15(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}), 4.08\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J 7.1 \mathrm{~Hz}\right)$, 3.77 (br s rotamer, $2 \mathrm{H}, 2$-piperidine-H), 3.08 (br s rotamer, 2 H , 6-piperidine-H), 2.73 (s, 2H, 3-H), 1.53 (s, 1H, OH), 1.43 (s, 4H, 3,5-piperidine-H) and $1.22\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J} 7.1 \mathrm{~Hz}\right) . \delta_{\mathrm{C}}(75 \mathrm{MHz}): 155.87$ $(\mathrm{C}=\mathrm{O}), 144.78,142.48,129.00,128.15$ and 126.79 ( ArC ), 118.25 $\left(\mathrm{CH}_{2}\right), 69.87,48.59\left(\mathrm{CH}_{2}\right), 40.17\left(\mathrm{CH}_{3}\right), 37.46\left(\mathrm{CH}_{2}\right)$ and $15.10\left(\mathrm{CH}_{2}\right)$. $\nu_{\max }($ film $) / \mathrm{cm}^{-1}: 3435(\mathrm{OH}), 3076$ and $3054(\mathrm{ArH}), 2978,2949$, 2917 and $2873(\mathrm{CH}), 1674(\mathrm{C}=0), 1624,1572,1472 . \mathrm{m} / \mathrm{z}\left(\mathrm{ES}^{+}, \%\right): 580$ (dimer), 290 ([M-H], 76), 272 ([M-OH], 100).

### 3.4.10. Ethyl 4-hydroxy-4-[2-(4-methoxyphenyl)prop-2-en-1-yllpiperidine-1-carboxylate ( $\mathbf{1 0 j}$ )

Purified by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}, \mathrm{SiO}_{2}\right)$ to afford the product as a yellow oil (61\%).
$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{4}$ found: C, 67.55; $\mathrm{H}, 7.70$; $\mathrm{N}, 4.50 \%$. Required: C, 67.69; $\mathrm{H}, 7.89$; N, $4.39 \% . \delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.39$ (d, 2H, $2,6-\mathrm{ArH}, J 7.1 \mathrm{~Hz}$ ), 7.33 (t, 2H, 3,5-ArH, J 7.1 Hz), 5.42 (d, 1H, 1a-H, J 1.5 Hz ), $5.15(\mathrm{~s}, 1 \mathrm{H}$, $1 \mathrm{~b}-\mathrm{H}), 4.09\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J 7.1 \mathrm{~Hz}\right), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right.$ and $2 \mathrm{H}, 2,6-$ piperidine-H), 3.08 (br s rotamer, $2 \mathrm{H}, 2,6$-piperidine-H), 2.70 (s, $2 \mathrm{H}, 3-\mathrm{H}), 1.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.43(\mathrm{~s}, 4 \mathrm{H}, 3,5-$ piperidine-H) and $1.22(\mathrm{t}$, $\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J 7.1 \mathrm{~Hz}\right) . \delta_{\mathrm{C}}(75 \mathrm{MHz}): 159.71,155.88(\mathrm{C}=\mathrm{O}), 144.02$, 134.68, 127.95 and $116.68(\mathrm{ArC}), 114.34\left(\mathrm{CH}_{2}\right), 69.83,61.56\left(\mathrm{CH}_{2}\right)$, 55.67, $48.54\left(\mathrm{CH}_{2}\right), 43.42,40.20,37.56\left(\mathrm{CH}_{2}\right)$ and 15.10. $\nu_{\text {max }}($ film $) /$ $\mathrm{cm}^{-1}$ : $3443(\mathrm{OH}), 3082(\mathrm{ArH}), 2983,2953$ and $2838(\mathrm{CH}), 1678$ (C=O), 1607 (Ar), 1573, 1467, 1440, 1352. m/z (ES $\left.{ }^{+}, \%\right): 320([M+H]$, 53), 302 ([M-OH], 54).

### 3.4.11. Ethyl 4-hydroxy-4-[2-(2-thienyl)prop-2-en-1-yl]piperidine-1-carboxylate (10I)

Purified by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}, \mathrm{SiO}_{2}\right)$ to afford the product as a yellow oil (72\%).
$\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4}$ S found: C, 61.2; H, 7.0; N, 4.6\%. Required: C, 61.0; H, $7.2 ; \mathrm{N}, 4.7 \% . \delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.18$ (d, 1H, thienyl $5-\mathrm{H}, \mathrm{J} 5.1 \mathrm{~Hz}$ ), 7.06 (d, 1 H , thienyl $3-\mathrm{H}, J 3.7 \mathrm{~Hz}), 6.96(\mathrm{t}, 1 \mathrm{H}$, thienyl $4-\mathrm{H}, J 5.1$ and 3.7 Hz ), 5.57 (s, 1H, 1a-H), $5.02(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}), 4.08$ (q, 2H, CH2CH3, J 7.1 Hz ), 3.86 (br s rotamer, 2H, 2-piperidine-H), 3.11 (br s rotamer, 2 H , piperidine $6-\mathrm{H}$ ), 2.67 ( $\mathrm{s}, 2 \mathrm{H}, 3-\mathrm{H}$ ), $1.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.53(\mathrm{~s}, 4 \mathrm{H}, 3,5-$ piperidine-H) and $1.24\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J} 7.1 \mathrm{~Hz}\right) . \delta_{\mathrm{C}}(75 \mathrm{MHz}): 155.90$ $(\mathrm{C}=\mathrm{O}), 146.20,137.36,127.96,125.35$ and $124.98,116.20\left(\mathrm{CH}_{2}\right)$, $69.69\left(\mathrm{CH}_{2}\right), 61.62,48.94\left(\mathrm{CH}_{2}\right), 43.41,40.18,37.38\left(\mathrm{CH}_{2}\right), 15.10 . \nu_{\max }$ (film)/ $\mathrm{cm}^{-1}: 3433(\mathrm{OH}), 3104$ and $3082(\mathrm{ArH}), 2978,2923$ and 2873 (CH), 2241, 1674 (C=O), 1613, 1472, 1385, 1352. m/z (ES $\left.{ }^{+}, \%\right): 296$ ([M+H], 86), 278 ([M-OH], 46).
3.4.12. Ethyl 4-hydroxy-4-[2-(4-methylphenyl)prop-2-en-1-yllpiperidine-1-carboxylate (10k)

Purified by column chromatography $\left(\mathrm{Et}_{2} \mathrm{O}, \mathrm{SiO}_{2}\right)$ to afford the product as a yellow oil (58\%).
$\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3}$ found: C, $71.1 ; \mathrm{H}, 8.2 ; \mathrm{N}, 4.45 \%$. Required: C, $71.2 ; \mathrm{H}$, 8.3; N, 4.62\%. $\delta_{\mathrm{H}}(500 \mathrm{MHz}): 7.22$ (d, 2H, 2,6-ArH, J 8.0 Hz ), 7.06 (d, $2 \mathrm{H}, 3,5-\mathrm{ArH}, \mathrm{J} 8.0 \mathrm{~Hz}), 5.31$ (s, 1H, 1a-H), 5.03 (s, 1H, 1b-H), 4.01 (q, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}, J 7.1 \mathrm{~Hz}$ ), 3.71 (br s rotamer, $2 \mathrm{H}, 2$-piperidine-H), 3.00 (br s rotamer, $2 \mathrm{H}, 6$-piperidine-H), 2.64 (s, $2 \mathrm{H}, 3-\mathrm{H}$ ), 2.27 (s, 3 H , $\left.\mathrm{CH}_{3}\right), 1.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 1.36(\mathrm{~s}, 4 \mathrm{H}, 3,5-$ piperidine-H) and $1.15(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{~J} 7.1 \mathrm{~Hz}\right) . \delta_{\mathrm{C}}(75 \mathrm{MHz}): 155.90(\mathrm{C}=\mathrm{O}), 146.20,137.36,127.96$, 125.35 and $124.98(\mathrm{ArC}), 116.20\left(\mathrm{CH}_{2}\right), 69.69,61.62\left(\mathrm{CH}_{2}\right), 48.94$ $\left(\mathrm{CH}_{2}\right), 43.41,40.18,37.38\left(\mathrm{CH}_{2}\right)$ and 15.10. $\nu_{\text {max }}($ film $) / \mathrm{cm}^{-1}: 3433$ (OH), 3104, 3082 ( ArH ), 2978, 2923 and 2873 (CH), 1674 (C=O), 1613, 1472, 1385. m/z (ES, \%): 304 ([M+H], 33), 286 ([M-OH], 100).

### 3.4.13. 1-(2-Phenylprop-2-en-1-yl)cyclohexanol (10m)

Purified by column chromatography ( $8: 2 \mathrm{v} / \mathrm{v}$ hexane/EtOAc, $\mathrm{SiO}_{2}$ ) to give the product as a yellow oil (88\%).
$\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}$ found: C, 83.05 ; H, $9.6 \%$. Required: C, 83.29; H, $9.3 \% . \delta_{\mathrm{H}}$ ( 300 MHz ): $7.43-7.27$ (m, 5H, PhH), 5.38 (d, 1H, 1a-H, J 1.8 Hz ), $5.14(\mathrm{~d}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}, J 0.8 \mathrm{~Hz}), 2.73(\mathrm{~s}, 2 \mathrm{H}, 3-\mathrm{H})$ and $1.58-1.13(\mathrm{~m}, 11 \mathrm{H}$, cyclohexane-H and OH ). $\delta_{\mathrm{C}}(75 \mathrm{MHz}$ ): $145.74,143.03,128.83,127.89$ and 126.91, $117.76\left(\mathrm{CH}_{2}\right), 71.76(\mathrm{CH}), 48.13\left(\mathrm{CH}_{2}\right), 38.26\left(\mathrm{CH}_{2}\right), 26.12$ $\left(\mathrm{CH}_{2}\right), 22.55\left(\mathrm{CH}_{2}\right) . \nu_{\max }($ film $) / \mathrm{cm}^{-1}: 3434(\mathrm{OH}), 2931$ and 2857 $(\mathrm{CH}), 1623,1598$ and 1576 ( ArC ), 1429, 1446. m/z (ES $\left.{ }^{+}, \%\right): 199$ ([M-OH], 56\%).

### 3.4.14. 1-(2-(3-Methoxyphenyl)-prop-2-en-1-yl)cyclohexanol (10n)

Purified by column chromatography ( $9: 1 \mathrm{v} / \mathrm{v}$ hexane/EtOAc, $\mathrm{SiO}_{2}$ ) to give the product as a yellow oil ( $216 \mathrm{mg}, 94 \%$ ).
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$ found: C, 77.8 ; H, $9.0 \%$. Required: C, $78.0 ; \mathrm{H}, 9.0 \% . \delta_{\mathrm{H}}$ ( 500 MHz ): 7.24 (t, 1H, $5-\mathrm{ArH}, \mathrm{J} 7.9 \mathrm{~Hz}$ ), 7.00 (d, 1H, 6-ArH, J 7.9 Hz ), 6.95 (t, 1H, 2-ArH, J 2.2 Hz ), 6.81 (dd, 1H, 4-ArH, J 7.9 and 2.2 Hz ), $5.38(\mathrm{~d}, 1 \mathrm{H}, 1 \mathrm{a}-\mathrm{H}, \mathrm{J} 1.7 \mathrm{~Hz}), 5.14(\mathrm{~s}, 1 \mathrm{H}, 1 \mathrm{~b}-\mathrm{H}), 3.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.70$ ( $\mathrm{s}, 2 \mathrm{H}, 3-\mathrm{H}$ ), 1.54-1.33 (m, 9H, cyclohexane-H), $1.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$ and 1.28 (d, 1H, cyclohexanol-H, J 10.3 Hz ). $\delta_{\mathrm{C}}(75 \mathrm{MHz}): 159.98,145.62$, 144.61 and $129.81(\mathrm{ArC}), 119.44\left(\mathrm{CH}_{2}\right), 117.88,113.00$ and 112.92 ( ArC ), $71.75(\mathrm{CH}), 55.64\left(\mathrm{CH}_{3}\right), 48.24\left(\mathrm{CH}_{2}\right), 38.21\left(\mathrm{CH}_{2}\right), 26.12\left(\mathrm{CH}_{2}\right)$ and $22.56\left(\mathrm{CH}_{2}\right) \cdot \nu_{\max }($ film $) / \mathrm{cm}^{-1}: 3435(\mathrm{OH}), 2935$ and $2858(\mathrm{CH})$, 1598, 1576, 1489, 1449, 1238. m/z (ES $\left.{ }^{+}, \%\right): 230\left([\mathrm{M}-\mathrm{OH}]^{+}, 22\right), 278$ ([M-OH], 97).

## Acknowledgements

We thank Leeds University and the Serbian Ministry of Science (grant no. 142071 and 142072) for support.

## References and notes

1. For some recent reviews see: Tietze, L. F.; Kinzel, T. Pure Appl. Chem. 2007, 79, 629-650; Denmark, S. E.; Baird, J. D. Chem.-Eur. J. 2006, 12, 4954-4963; Dupont, J.; Consorti, C. S.; Spencer, J. Chem. Rev. 2005, 105, 2527-2571; Brase, S.; Kirchhoff, J. H.; Kobberling, J. Tetrahedron 2003, 59, 885-939; Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176-4211; Cacchi, S.; Fabrizi, G.; Parisi, L. M. Heterocycles 2002, 58, 667-682.
2. Tsuji, J. Palladium Reagents and Catalysts; John Wiley and Sons: Chichester, 2004; Li, J. J.; Gribble, G. W. Palladium in Heterocyclic Chemistry; Pergamon: Oxford UK, 2000.
3. Sole, D.; Serrano, O. Angew. Chem., Int. Ed. 2007, 46, 7270-7272; Liu, G.; Lu, X. J. Am. Chem. Soc. 2006, 128, 16504-16505; Zhou, C.; Larock, R. C. J. Org. Chem. 2006, 71, 3551-3558; Gai, X.; Grigg, R.; Collard, S.; Muir, J. E. J. Chem. Soc., Chem. Commun. 2000, 1765-1766; Larock, R. C.; Tian, Q.; Pletnev, A. A. J. Am.

Chem. Soc. 1999, 121, 3238-3239; Quan, L. G.; Gevorgyan, V.; Yamamoto, Y. J. Am. Chem. Soc. 1999, 121, 3545-3546.
4. For some recent reviews see: Zanoni, G.; Pontiroli, A.; Marchetti, A.; Vidari, G. Eur. J. Org. Chem. 2007, 3599-3611; Marshall, J. Chem. Rev. 2000, 100, 31633185; Tamaru, Y. J. Organomet. Chem. 1999, 576, 215-231; For recent papers, see: Kimura, M.; Mukai, R.; Tamaki, T.; Horino, Y.; Tamaru, Y. J. Am. Chem. Soc. 2007, 129, 4122-4123; Hopkins, C. D.; Malinakova, H. C. Org. Lett. 2006, 8, 59715974; Howell, G. P.; Minnaard, A. J.; Feringa, B. L. Org. Biomol. Chem. 2006, 4, 1278-1283; Zanoni, G.; Gladiali, S.; Marchetti, A.; Piccinini, P.; Tredici, I.; Vidari, G. Angew. Chem., Int. Ed. 2004, 43, 846-849; Gomez, A. M.; Barrio, A.; Pedregosa, A.; Valverde, S.; Lopez, J. C. Tetrahedron Lett. 2003, 44, 8433-8435; Araki, S.; Kambe, S.; Kameda, K.; Hirashita, T. Synthesis 2003, 751-754.
5. Norsikian, S.; Lubineau, A. Org. Biomol. Chem. 2005, 3, 4089-4094; Miyabe, H.; Yamaoka, Y.; Naito, T.; Takemoto, Y. J. Org. Chem. 2004, 69, 1415-1418; Hirashita, T.; Kamei, T.; Satake, M.; Horie, T.; Shimizu, H.; Araki, S. Org. Biomol. Chem. 2003, 1, 3799-3803; Tang, T.; Keum, G.; Kang, S. B.; Chung, B. Y.; Kim, Y. Synthesis 2003, 775-779; Cooper, I. R.; Grigg, R.; MacLachlan, W. S.; Sridharan, V.; Thornton-Pett, M. Tetrahedron Lett. 2003, 44, 403-405; Kang, S.; Lee, S.; Jung, J.; Lim, Y. J. Org. Chem. 2002, 67, 4376-4379; Araki, S.; Kameda, K.; Tanaka, J.; Hirashita, T.; Yamamura, H.; Kawai, M. J. Org. Chem. 2001, 66, 7919-7921; Anwar, U.; Grigg, R.; Rasparini, M.; Savic, V.; Sridharan, V. Chem. Commun. 2000, 645-646; Araki, S.; Kamei, T.; Hirashita, T.; Yamamura, H.; Kawai, M. Org. Lett. 2000, 2, 847-849; Ohno, H.; Hamaguchi, H.; Tanaka, T. Org. Lett. 2000, 2, 2161-2163.
6. Lee, P. H. Bull. Korean Chem. Soc. 2007, 28, 17-28; Podlech, J.; Maier, T. C. Synthesis 2003, 633-655.
7. Cooper, I. R.; Grigg, R.; Hardie, M. J.; MacLachlan, W. S.; Sridharan, V.; Thomas, W. A. Tetrahedron Lett. 2003, 44, 2283-2285; Cooper, I. R.; Grigg, R.; MacLachlan, W. S.; Thornton-Pett, M.; Sridharan, V. Chem. Commun. 2002, 1372-1373.
8. (a) Grigg, R.; McCaffrey, S.; Sridharan, V.; Fishwick, C. W. G.; Kilner, C.; Korn, S.; Bailey, K.; Blacker, J. Tetrahedron 2006, 62, 12159-12171; (b) Grigg, R.; Blacker, J.; Kilner, C.; McCaffrey, S.; Savic, V.; Sridharan, V. Tetrahedron, submitted for publication.
9. Cleghorn, L. A. T.; Cooper, I. R.; Fishwick, C. W. G.; Grigg, R.; MacLachlan, W. S.; Rasparini, M.; Sridharan, V. J. Organomet. Chem. 2003, 687, 483-493; Cleghorn, L. A. T.; Cooper, I. R.; Grigg, R.; MacLachlan, W. S.; Sridharan, V. Tetrahedron Lett. 2003, 44, 7969-7973.
10. Miles, R. B.; Davis, C. E.; Coates, R. M. J. Org. Chem. 2006, 71, 1493-1501; Han, X.; Widenhoefer, R. A. Organometallics 2007, 26, 4061-4065.
11. Chan, T. H.; Yang, Y. J. Am. Chem. Soc. 1999, 121, 3228-3229; Law, M. C.; Cheung, T. W.; Wong, K. Y.; Chan, T. H. J. Org. Chem. 2007, 72, 923-929; Fontana, G.; Savona, G.; Ferrante, F. Lett. Org. Chem. 2006, 3, 98-102.
12. For a detailed discussion of $\operatorname{In}(\mathrm{I})$, see: Pardoe, J. A. J.; Downs, A. J. Chem. Rev. 2007, 107, 2-45.
13. (a) Araki, S.; Shimizu, T.; Jin, S.; Butsugan, Y. J. Chem. Soc., Chem. Commun. 1991, 824-825; (b) Wang, L.; Sun, X.; Zhang, Y. Synth. Commun. 1998, 28, 3263-3264; (c) Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Kom, H.; Kim, S.; Lee, P. H.; Iwasawa, N. Org. Lett. 2003, 5, 1725-1728.
14. Parrill, A. L.; Dolata, D. P. Tetrahedron Lett. 1994, 35, 7319-7322.
15. Knodler, A.; Hubler, K.; Sixt, T.; Kaim, W. Inorg. Chem. Commun. 2000, 3, 182-184; Kless, A.; Holz, J.; Reinke, H.; Borner, A. J. Organomet. Chem. 1998, 553, 99-102; Nakahara, A.; Hidaka, J.; Tsuchida, R. Bull. Chem. Soc. Jpn. 1956, 29, 925-928.
16. Additives such as thiophene and related compounds have been shown to be beneficial for the reaction. Grigg, R., unpublished results.


[^0]:    * Corresponding authors. Tel./fax: +44 1133436501 (R.G.); tel.: +38 1113951243 (V.S.).

    E-mail addresses: r.grigg@leeds.ac.uk (R. Grigg), vladimir.savic@pharmacy.bg. ac.yu (V. Savic).

[^1]:    ${ }^{\text {a }}$ Reaction conditions: aldehyde 1 mol equiv, aryl iodide 1 mol equiv, $\mathrm{Pd}(\mathrm{OAc})_{2}$ $10 \mathrm{~mol} \%, \mathrm{PPh}_{3} 20 \mathrm{~mol} \%$, In 1.5 mol equiv, DMF, allene (Schlenk flask, $85^{\circ} \mathrm{C}, 12 \mathrm{~h}$ ).
    ${ }^{\mathrm{b}}$ Isolated yield.

[^2]:    ${ }^{\text {a }}$ Reaction conditions: aryl iodide 1.5 mol equiv, ketone 1 mol equiv, $\mathrm{Pd}(\mathrm{OAc})_{2}$ $10 \mathrm{~mol} \%$, TFP $20 \mathrm{~mol} \%$, CuI $40 \mathrm{~mol} \%$, In 1.5 mol equiv, DMF, allene (Schlenk flask,
    $85^{\circ} \mathrm{C}, 3 \mathrm{~h}$ ).
    ${ }^{\mathrm{b}}$ Isolated yield.
    ${ }^{\text {c }}$ Time: 24 h at $85^{\circ} \mathrm{C}$.
    ${ }^{\text {d }}$ Time: 19 h at $85^{\circ} \mathrm{C}$.

[^3]:    3.4.9. Ethyl 4-hydroxy-4-(2-phenylprop-2-en-1-yl)piperidine-1carboxylate (10i)

    Purified by column chromatography ( $1: 1 \mathrm{v} / \mathrm{v}$ hexane $/ \mathrm{Et}_{2} \mathrm{O}, \mathrm{SiO}_{2}$ ) to afford the product as a yellow oil (77\%).

