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ARTICLE INFO ABSTRACT

Handling Editor: Marti Nadal Although profoundly studied, etiology of pancreatic cancer (PC) is still rather scarce. Some of established risk
factors of PC are connected to an increased cadmium (Cd) body burden. Hence, the aim of this study was to
investigate the role of this environmental pollutant in PC development by conducting human observational,
experimental and in vitro studies.

The case-control study included 31 patients with a histologically based diagnosis of exocrine PC subjected to
radical surgical intervention as cases and 29 accidental fatalities or subjects who died of a nonmalignant illness
as controls. Animal study included two treated groups of Wistar rats (15 and 30 mg Cd/kg b.w) and untreated
control group, sacrificed 24 h after single oral exposure. In in vitro study pancreas hTERT-HPNE and AsPC-1 cells
were exposed to different Cd concentrations corresponding to levels measured in human cancerous pancreatic
tissue.

Cd content in cancer tissue significantly differed from the content in healthy controls. Odds ratio levels for PC
development were 2.79 (95% CI 0.91-8.50) and 3.44 (95% CI 1.19-9.95) in the third and fourth quartiles of Cd
distribution, respectively. Animal study confirmed Cd deposition in pancreatic tissue. In vitro studies revealed
that Cd produces disturbances in intrinsic pathway of apoptotic activity and the elevation in oxidative stress in
pancreatic cells.

This study presents three different lines of evidence pointing towards Cd as an agent responsible for the
development of PC.
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1. Introduction death in both males and females. The same report gives projection that

in the 28 countries of the European Union, PC will surpass breast cancer

Pancreatic cancer (PC) was the fourth most common cause of cancer
death in the United States in 2013 (Siegel and Naishadham, 2013) and
according to projections it is expected to be the second most common
cause by 2030 (Rahib et al., 2014). The situation in Europe is similar
with nearly a million aggregate life lost annually and almost complete
loss of healthy life in affected individuals (Carrato et al., 2015). The
newest report on the global burden of cancer worldwide using the
GLOBOCAN 2018 estimated PC as the seventh leading cause of cancer

as the third leading cause of cancer death in the future (Bray et al.,
2018). Despite recent advances in surgical techniques and medical
therapies, the median survival time for a patient diagnosed with PC is
4.6 months after diagnosis (Farthing et al., 2014), while the median
5 year survival rate is < 10% (Carrato et al., 2015; Lucas et al., 2016).
The incidence of PC in Serbia has been documented for the region of
Central Serbia. The data for the 2015 have shown that the number of
new PC cases in males was 472 out of 14,582, and in females 403 out of
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13,285 which makes PC the 7th cause of new cancer cases by frequency.
If number of death cases is taken into consideration, then PC takes the
4th position by its frequency in both sexes (Miljus et al., 2017).

Having in mind these dismal data on disease burden and poor PC
prognosis, significant advances in the understanding of the etiology and
tumor biology, as well as early detection and screening of high-risk
population is of paramount importance. The identification and
screening of the patients who are at an increased risk of developing PC
may allow diagnosis at an earlier stage when the cancer is still surgi-
cally resectable. Hence, it is essential to identify the high-risk popula-
tion, i.e. to identify risk factors for PC development. As reviewed by
Becker et al. (2014), risk factors for developing PC include multiple
genetic syndromes as well as modifiable risk factors which can raise the
risk of PC up to 132-fold. Modifiable risk factors include alcohol use,
chronic pancreatitis, diet, obesity, Diabetes mellitus, as well as ab-
dominal surgeries underwent (cholecystectomy, gastrectomy) and in-
fections (H. pylori). The main nongenetic (modifiable) environmental
risk factors associated with PC development encompass inhalation of
cigarette smoke, exposure to mutagenic nitrosamines, organochlorine
compounds, and heavy metals (Barone et al., 2016; Porta et al., 2007).

Cadmium (Cd) is highly persistent environmental toxicant with
wide range toxicity. It is released into the air, soil, and water mainly by
human activities. Due to high rates of soil-to-plant transfer, its dietary
intake is unavoidable (Satarug, 2018). The most significant dietary
sources of Cd are foods frequently consumed in large quantities such as
rice, potato, wheat, leafy vegetables, and cereal crops. However, to-
bacco use is the major environmental source of Cd exposure in the
general population (ATSDR, 2012). Ones in the organism, Cd deposits
in tissues and organs due to lack of active excretory mechanisms. Es-
timated half-life of Cd is in the range of 7-16 years (Nordberg et al.,
2007; Suwazono et al., 2009) while recently conducted Swedish study
reported the Cd half-life to be even 45 years (Fransson et al., 2014).
Cadmium exhibits plethora of toxic effects in many organs, such as
kidneys, liver, bones, testes, cardiovascular and endocrine system
(ATSDR, 2012; Buha et al.,, 2018; Mezynska and Brzéska, 2017;
Satarug, 2018; Wang et al., 2016; Xing et al., 2018). Cadmium and its
compounds have been classified as known human carcinogens by the
International Agency for Research on Cancer since 1993 (IARC, 1993)
based on epidemiological studies showing a causal connection with the
development of lung cancer. Also, a new IARC monograph on Cd and
Cd compounds stated that positive association have been observed
between Cd exposure and cancer of the kidney and the prostate (IARC,
2012) in humans. Epidemiological studies have also implicated its
connection to bladder cancer (Feki-Tounsi and Hamza-Chaffai, 2014),
breast cancer (Van Maele-Fabry et al., 2016), etc. The linkage between
Cd exposure and PC is somewhat expected since some of the well-es-
tablished risk factors, such as smoking and age, are connected to in-
creased Cd body burden. In our recent review paper, consolidation of
human, animal and in vitro published data indicated a possible asso-
ciation between Cd exposure and elevated PC risk (Buha et al., 2017).
Nevertheless, conflicting data were reported which together with the
fact that investigations in population without occupational exposure
are rather scarce and that the exact mechanisms of this carcinogenicity
are still unknown, prompt us to perform this study. First, we conducted
a research in humans that would show whether Cd levels were different
in pancreatic tissues of PC patients and controls. Second, we wanted to
show if Cd accumulates in pancreatic tissue utilizing animal model and
finally, to reveal the possible molecular mechanisms behind Cd in-
volvement in PC using in vitro cell cultures.

2. Materials and methods
2.1. Human study

2.1.1. Study population and sample collection
The case-control study was carried out in the First Surgical Clinic,
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Clinical Center of Serbia, Belgrade. The cases were a consecutive series
of 31 newly diagnosed patients with PC. Exocrine PC was confirmed by
reviewing the histopathological slides of all patients. No patients with
chronic pancreatitis were included in this study. All patients were
Serbian citizens and recruited between May 2014 and December 2016
before receiving chemotherapy or radiotherapy and with no restrictions
based on age, sex or tumor stage. After we fully explained the nature of
the study, informed oral and/or written consent was obtained from
each person enrolled in the study. According to the clinical situation,
excision of pancreatic tissue was performed at the First Surgical Clinic
during Whipple procedure or total pancreatectomy. For each patient,
two specimens of pancreatic tissue (about 1g), were taken for the
analysis, i.e. cancerous and surrounding non-cancerous tissue. As con-
trols, pancreatic-tissue samples were taken during routine postmortem
examinations at the Department of Forensic Medicine, the University of
Belgrade from 29 accidental fatalities or subjects who died of a non-
malignant illness. Each control was free of any malignancy as de-
termined by specialists in forensic medicine. Control subjects were
matched for age and gender to cases. The study was approved by the
Ethical Committee of Clinical Center of Serbia (Approval No. 31/8).

The collected samples of pancreatic tissue were stored in plastic
tubes labeled with patients' name, identification number and collection
time and date. The preparation of tissue samples collected from patient
and control subject was completely the same. All samples were fresh
frozen without any prior treatment with chemicals and stored —20 °C
until the analysis.

2.1.2. Sample preparations

Before elemental analysis, tissue samples were digested in a mixture
of 7 mL of p.a. Nitric Acid (65% w/v; Merck; Darmstadt, Germany) and
1 mL of p.a. Hydrogen Peroxide (30% w/v; Sigma-Aldrich, St. Louis,
USA) in acid-cleaned TFM vessels in an Ethos One Microwave System
(Milestone; Sorisole, Italy). Digestion was carried out in three steps:
heating for 15 min (power 1000 W, temperature 180 °C), digestion for
15 min (power 1000 W, temperature 180 °C) and cooling for 15 min.
Blanks containing acid mixture without sample were prepared and di-
gested in parallel. The cooled digested samples and blanks were then
transferred into a 25mL bottles and diluted with redistilled water.
Cadmium levels in biological media were determined by graphite fur-
nace AAS (Agilent Technology, USA). More details are given in Section
2.3.

2.2. Animal study

2.2.1. Animals

The study was conducted on male albino Wistar rats of 6-8 weeks of
age and app. 250 g body weight. Rats, free of typical rodent pathogens,
were obtained from a commercial breeder (the Military Medical
Academy, Belgrade) and acclimatized for a week prior to use in the
study. Rats were housed in stainless steel cages under standard la-
boratory conditions (temperature 25 *+ 3 °C, relative humidity of 35%
to 60%, 12-hour light-dark cycle) with free access to standard pelleted
diet (Veterinary Institute “Subotica”, Subotica, Serbia) and tap water.
All experimental procedures were approved by Ethical Committee on
Animal Experimentation of the University of Belgrade, Faculty of
Pharmacy (Approval No. 323-07-11822/2018-05).

2.2.2. Study design and experimental procedure

Rats were randomly divided into three groups, one control group
and two experimental groups (6 animals each). Experimental groups
received single treatment of aqueous solution of CdCl, (CdCl,xH,O,
Merck, Germany) in doses: 15 mg/kg b.w. (Cd;s group), 30 mg/kg b.w.
(Cdsg group), while the control group was treated with water only. The
doses were selected according to our previous Cd acute toxicity testing
in rats (Andjelkovic et al., 2019; Matovi¢ et al., 2012). The solutions for
the application were made in concentrations of 15mg Cd/l and 30 mg
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Cd/1, respectively and the treatment of all animals was performed by
oral gavage in a volume of 1 mL/kg b.w. Animals were sacrificed 24 h
after treatment under light anesthesia (10 mg/kg ketamine hydro-
chloride).

2.2.3. Sample preparations

Pancreas was excised and wet digested. Wet tissue samples
weighing about 500 mg were placed in Teflon containers with 7 mL
cHNO3 and 1 mL cH,0, and mineralized with microwave acid digestion
(Milestone START D, SK-10T, Italy). Digestion procedure is described in
Section 2.1.2. The resulting solutions were diluted up to 25 mL before
measurement.

2.3. Cadmium determination

Cadmium concentrations in both digested human and animal sam-
ples were measured using atomic absorption spectrophotometer (AAS
GTA 120 graphite tube atomizer, 200 series AA, Agilent Technologies,
US). Standard solutions of CANO; in HNO3; (1002 + 2mg/L) and
PbNO; in HNO3 (998 = 2mg/L) were used to create calibration curves
(Merck, Germany). Each sample was analyzed in triplicates in the same
assay to avoid interassay variations, and Cd concentrations were aver-
aged. The limit of quantification of applied method was 0.055 pg Cd/L
while the limit of detection was 0.0274 pug Cd/L.

2.4. Invitro analyses

2.4.1. Cell culture: cell lines and cell maintenance

All cell lines purchased from American Type Culture Collection
(ATCC, Manassas, VA). Pancreas hTERT-HPNE (“human pancreatic
Nestin-expressing” cells; ATCC® CRL-4023™, control pancreatic cells)
and AsPC-1 (ATCC® CRL-1682™, pancreatic tumor cells) were grown
and maintained as outlined in the ATCC protocols. HPNE growth media
consisted of DMEM base media supplemented with 2mM glutamine,
1mg/mL (+) glucose and 1.5g/L sodium bicarbonate. Media was
further supplemented with M3 Base media supplement (Incell Corp, San
Antonio, TX; M300F-500) at a ratio of 3:1 (DMEM:M3). To produce
complete growth media, 5% fetal bovine serum, 10ng/mL human
epidermal growth factor, and 750 ng/mL puromycin added to the
DMEM:M3 Base. AsPC-1 media was RPMI-1640 with 2 mM glutamine
supplemented with 10% fetal bovine serum, and 1% penicillin/strep-
tomycin. Assay media used in the cytotoxicity assays was a base MEM
supplemented with 2 mM glutamine and 1% fetal bovine serum. Assay
media was phenol-free and low serum to minimize influence of pro-
tective growth factors in serum. Cells were plated at a density of
2-5 x 10* cells/well in a black/clear bottom 96-well plate. Plates with
cells are returned to the incubator (37 °C; 5% CO,) and the cells are
allowed to attach for at least 24 h. After 24 h, the growth media is re-
moved and replaced with assay media containing the appropriate
treatment(s). The concentrations of Cd utilized (2, 6, 14 ppm) were
chosen to include levels measured in human cancerous tissue (data
presented in Fig. 1). Solutions were prepared by calculating the Cd
component (112.4g/mol) of CdCl, (183.32g/mol), yielding
112.4 ppm = 112.4 mg/L = 1 mM. Final actual concentrations of Cd in
the well were 2ppm=17.9uM; 6ppm =53.5uM and
14 ppm = 124.5 uM. We have determined the LCs, values for CdCl, in
both cell lines and these values range from 50 to 80 uM (unpublished
observation). Earlier work has reported a wide range of ICs, or LCso,
values in a variety of marine organisms ranging from 1uM to 75uM
(Muthukumaravel et al., 2007). Little work has been done in pancreatic
cell culture, but investigators have reported in other cell lines that in-
creasing the duration of exposure will lower the LCsq value (Fotakis and
Timbrell, 2006) and that in hepatic and pituitary cells, the LCs, value is
40-50 uM (Fotakis and Timbrell, 2006; Hinkle et al., 1987). Therefore,
our median concentration approximates the reported ICso value for
CdCl, in cell culture.
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Fig. 1. The levels of Cd in the human pancreatic tissue of the study population.
The box represents interquartile range (25-75th percentile), the line within the
box represents median value and ends of the whiskers represent the minimum
and maximum values within the group. Means marked by * are significantly
different from controls, means marked with { are significantly different from
the surrounding non-cancer tissue. (Kruskal-Wallis, Mann-Whitney test with
Bonferroni correction, P < 0.0017).

All cell culture work was performed in accordance with standard
Biosafety Level 2 guidelines. The project was approved by the
Oklahoma State University Center for Health Science Institutional
Biosafety committee in compliance with all National Institutes of
Health regulations.

2.4.2. Caspase 3/7 activity

Assessment of caspase 3/7 activity (a measurement of apoptosis)
was determined using the Apo-One™ Homogeneous caspase-3/7 assay
(Promega, Madison WI). Caspase 3 and 7 will act upon the non-fluor-
escent substrate rhodamine 110, bis-(N-CBZL-aspartyl-L-glutamyl-L-
valyl-L-aspartic acid amide; Z-DEVD-R110), removing the DEVD pep-
tides resulting in the rhodamine 110 leaving group being excited at a
wavelength of 499 nm with an emission wavelength of 521 nm. Any
fluorescence generated is directly proportional to the amount of caspase
3 and 7 present. Cells were plated as described above, allowed to attach
for 24 h and growth media was removed and replaced with assay media
in all groups except for the media control group (growth media re-
moved and replaced with fresh media). The four treatment groups were
low serum (MEM without phenol red supplemented with 1% FBS/no
Cd); 2 ppm Cd; 6 ppm Cd; and 14 ppm Cd. Phenol Red was excluded
from the media due to its ability to scavenge free radicals and provide
nutrients and growth factors to the cells which would confound any
cytotoxicity data. After 48 h exposure, caspase 3/7 activity was de-
termined by the addition of 100 pL (1:1 with media) of the caspase 3/7
substrate/buffer mix. Cell were covered and returned to the incubator
(37 °C/5% CO2) for 1h. Emitted fluorescence was measured using a
Bio-Tek ® plate reader and KC4™ software at 485/25 nm (excitation)/
530/25 nm (emission).

2.4.3. Dichlorofluorescein (DCFH)/oxidative stress assay

Each cell line was grown and plated as described above and the cells
were allowed to adhere for 24 h prior to the initiation of the oxidative
stress assay. After 24 h, the media was removed and cells washed 2 x
with warm Krebs buffer. Cells were ‘loaded’ with DCFH by diluting
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stock DCFH (10 mM) in DMSO to 100 uM in pre-warmed Krebs. Plates
were returned to the incubator for 30 min, followed by removal of the
DCFH loading solution, and washing 2 X with warmed Krebs. Solutions
of Cd (0, 2, 6, and 14 ppm) in warmed Krebs (100 pL) were added to the
appropriate wells and the plated were covered and allowed to incubate
at room temperature for 30 min. Following the 30 min incubation,
fluorescence from the generation of DCF (directly proportional to the
amount of oxidative stress) was measured using a Bio-Tek plate reader
with the settings of 485 nm (excitation) and 585 nm (emission) with an
integration time of 40 ms. Assays were run three separate times in tri-
plicate. Data is graphically presented as the mean = SEM of fluores-
cence generated measured as ‘Relative Fluorescence Units’ or RFU.

2.5. Statistical analysis

Since Cd concentrations in both human and animal tissues were not
distributed normally (according to Kolmogorov-Smirnov test) non-
parametric Kruskal-Wallis followed by post hoc Mann-Whitney tests for
between-groups comparisons with Bonferroni correction were per-
formed. The level of significance was set at 0.0017 (Bonferroni cor-
rection 0.05/3). These statistical analyses were performed using IBM
SPSS Statistics (version 18.0 for Windows) software. Visualization of
the data was performed using GraphPad Prism 5 software (GraphPad
software, Inc., La Jolla, CA, USA).

For association analyses, participants were divided into quartiles
based on the distribution of Cd among controls. Odds ratio (OR) with
their 95% confidence intervals (CI) of PC in the second, middle and
upper quartiles of Cd human pancreatic concentrations were assessed
using unconditional logistic regression. The lowest quartile was used as
a reference category to identify cutoffs. The P-values of the association
between Cd concentrations and cancer risk were calculated. Chi-
squared test for trend was computed. Results were considered statisti-
cally significant at P < 0.05. These statistical analyses were performed
in MedCalc Software.

Data from the in vitro assays was analyzed using GraphPad Prism v
7.03 (GraphPad, San Diego, CA). The raw data (non-transformed) was
analyzed by two-way ANOVA (Concentration x Cell Line). A significant
ANOVA was followed by post hoc analysis using Sidak's test for multiple
comparisons. Sidak's test was used as a more powerful alternative to the
Bonferroni test. The Brown-Forsythe test was performed to determine
whether the deviation between groups was different leading to a false
positive (Type I error). A non-significant Brown-Forsythe was needed to
analyze the data further. The threshold for statistical significance for all
analyses was set as P < 0.05.

3. Results
3.1. Results of study in humans

3.1.1. Variations in Cd levels in the study population
Table 1 gives Cd levels in the cases according to patient's age and

Table 1
Cadmium concentrations (ug/g) in pancreatic tissue of cancer patients ac-
cording to their sex and age.

No. Cancerous tissue P Non-cancerous tissue P
(ug Cd/g wet tissue) (ug Cd/g wet tissue)
Sex
Male 14 12.25 (0.29-17.06) 0.46 1.00 (0.25-13.91) 0.26
Female 17 14.11 (0.44-18.64) 1.89 (0.36-17.75)
Age
<60 14 11.56 (0.29-16.28) 0.22 0.92 (0.25-2.11) 0.33
=60 17 12.01 (0.78-18.64) 1.92 (0.42-17.75)

Results are presented as medians and ranges. P-values were calculated using
Mann-Whitney test.
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sex. Patients' age across the cases ranged from 43 to 77 years, with
median range of 59.28 years. Cases were divided into two groups,
younger than 60 and older than 60 or 60. No significant differences
between levels of Cd in pancreatic tissues were detected. There were
slightly more females than males, (58.1%, 41.9%, respectively), with no
statistically significant difference in Cd levels between groups. Simi-
larly, no significant difference was observed between Cd levels ac-
cording to the patients' age.

A comparison of the different ranges of Cd levels determined in the
pancreatic samples of the case and control population is depicted in
Fig. 1. Unexpectedly high concentrations of Cd (1.27-18.64 g/g) were
found in cancerous tissue and were significantly higher when compared
to control levels (0.27-2.50 ug/g). Furthermore, Cd content in can-
cerous tissue was almost three times greater than in surrounding non-
cancerous tissue. Interestingly, Cd levels were also significantly higher
in surrounding non-cancerous tissue than in the controls. The level of
significance for all three comparisons was lower than 0.001. Distribu-
tion of Cd concentrations in the entire study population based on
quartile values also points to the tendency of higher Cd concentrations
in cases if compared to controls (Fig. 1).

3.1.2. Cadmium levels and risk for pancreatic cancer

The association between PC risk and Cd levels in pancreatic tissue is
indicated by the ORs and shown in Table 2. Pancreatic levels of Cd are
associated with increased risk of PC and there was a dose-response
relation between Cd exposure i.e. Cd levels in pancreatic tissue and PC
risk, since ORs were 3.20 (95% CI 1.051-9.742) and 3.990 (95% CI
1.363-11.679) in the third and fourth quartiles, respectively. The
subjects with Cd levels in third and fourth quartile had significantly
elevated risk of malignancy compared with the remaining subjects.

3.2. Results of animal study

Experimental groups treated with two different doses of Cd (15 mg
and 30 mg Cd/kg b.w.) had shown statistically significant higher levels
of Cd in pancreatic tissues compared to control group (Table 3).
Moreover, levels in Cdso group were significantly higher than in Cd;s
group, pointing to possible dose-dependent accumulation of Cd in
pancreatic tissue.

3.3. Results for in vitro cell culture study

3.3.1. Caspase 3/7 activity

Exposure to Cd (0, 2, 6, or 14 ppm) for 48 h had significant effects
on the activity of caspase 3/7 (Fig. 2). Interestingly, there was a robust
and significant difference in caspase 3/7 activity that was dependent on
the cell type (Fq 30 = 261.6; P < 0.0001) with HPNE cells exhibiting a
much higher level of caspase activity. Across each of the concentra-
tions, except for 14 ppm, HPNE cells exhibited a 3- to 6-fold increase in
caspase 3/7 activity. This could be due to normal cells exhibiting a
normal apoptotic response, whereas AsPC-1 cells, being tumor-derived
cells, have a reduced basal caspase activity that would result in

Table 2

Odds ratios (OR), 95% confidence intervals (CI), and P values for the associa-
tions between pancreatic cancer risk and cadmium concentrations in pancreatic
tissue of the survey population.

Controls Cases OR (95% CI) P
Cadmium, pg/g
< 0.491 10 6 1.00
0.491-0.558 4 1 2.193 (0.677-7.100) 0.190
0.558-0.966 5 3 3.200 (1.051-9.473) 0.041
=0.966 10 21 3.990 (1.136-11.679) 0.012
Trend 0.015

OR presented in bold are statistically significant.
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Table 3
Cadmium concentration in pancreatic tissues of the experimental rats treated
with single oral doses of Cd.

Control group Cd;s group Cd3o group
Median (ug Cd/kg) 0.39 75.00* 231.91+"
Range 0.18-0.60 70.8-80.02 217.75-396.52

Statistically significant differences (P < 0.0017) from control group are in-

dicated by *, and from Cd;s group by . (Kruskal-Wallis test, Mann-Whitney
post hoc with Bonferroni correction).

uncontrolled growth without cellular repair. We observed a significant
effect of Cd concentration on caspase activity (F4,30 =5.11;
P = 0.003) as well as a significant (F430 = 42.37; P < 0.0001) re-
lationship between Cd concentration and cell type.

No differences were observed in caspase activity between the
growth media control group and the assay media control (0 ppm),
suggesting that low-serum exposure periods up to 48 h do not affect
basal caspase activity. Post hoc comparison with Sidak's test revealed
that only 14 ppm Cd group was different compared to control. This
difference was observed for both cell lines, but with different effects.
Caspase 3/7 activity was significantly (P < 0.01) reduced in HPNE
cells following 48h exposure to Cd compared to control values,
whereas, caspase 3/7 activity was significantly (P < 0.01) increased
over 2-fold in the AsPC-1 cell line compared to their control values.

3.3.2. DCFH/oxidative stress study

The oxidative stress response status of each cell line was inversed to
our observation of caspase 3/7 activity. DCFH response was sig-
nificantly influenced by cell type (F;24 = 203.1; P < 0.0001) with
AsPC-1 cells exhibiting a significantly (P < 0.01) higher basal oxida-
tive stress status across all concentrations (Fig. 3).

In HPNE cells, there was an elevation across the different Cd con-
centrations, but only at 6 ppm was the fluorescent response sig-
nificantly (P = 0.002) greater (26%) than control values. The AsPC-1
response was significantly elevated by 14% (P = 0.03) at 2 ppm. These
data demonstrate that AsPC-1 cells exist with a greater oxidative status
compared to HPNE cells, and that Cd only weakly (14-26%) promotes
the generation of free radicals in these pancreatic cell lines.
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4. Discussion

The case control study showed significant association between EPC
risk and Cd pancreatic concentration i.e. Cd exposure. Importantly, this
association was concentration dependent. Results of animal study
confirmed Cd accumulation in pancreatic tissue, while in vitro study
identified oxidative stress and inhibition of apoptosis as possible me-
chanisms of Cd carcinogenicity in pancreas.

First investigations on possible connection between Cd exposure
and PC development were concerned with people occupationally ex-
posed to Cd (Ojajdrvi et al., 2000; Schwartz and Reis, 2000) giving
conflicting data. In next few years, studies were conducted in general
population to confirm or infirm this connection. The association be-
tween Cd exposure and PC development was investigated in subjects
living in East Delta Region of Egypt as a highly polluted region (Kriegel
et al., 2006) and South Louisiana, USA as a region with persistently
high rates of PC (Luckett et al., 2012). The former study investigated Cd
serum levels in 31 patients with adenocarcinoma and 52 control sub-
jects. The median age was similar to our study and slightly more males
than females were present in each group. Significant difference in mean
serum Cd levels between the cases and controls was observed in the
study with significant OR of 1.12 (1.04-1.23) pointing to significant
association between PC and high Cd serum levels (Kriegel et al., 2006).
These results are in accordance to our study. The later study was con-
ducted in 69 cases and 158 controls samples from Cajun population, an
ethnicity showed to be associated with increased risk of PC, living in
South Louisiana. The association between increased urinary Cd con-
centration and increased risk of PC was evidenced by the monotonically
increasing risk of PC with incremental quartiles of 0.5 ug Cd/g creati-
nine. The hypothesis of the presence of the etiological link between Cd
and PC was confirmed as well in study by Amaral et al. (2012). Levels of
twelve trace elements were determined in toenail samples of 188 EPC
cases and 399 hospital controls from Eastern Spain. Among subjects
whose Cd concentrations in toenails were in the highest quartile, sig-
nificantly increased risks of EPC development was observed. Some co-
hort studies concerned with the relationship between Cd and overall
cancer mortality also provided some evidence of the connection be-
tween Cd exposure and PC mortality (Adams et al., 2012; Garcia-
Esquinas et al., 2014; Sawada et al., 2012). In recent meta-analysis
(Chen et al., 2015) analyzing aforementioned case-control and cohort
studies summarized relative risk was 2.05 (1.58-2.66), comparing the

H hTERT-HPNE Fig. 2. Effect of 48 h Cd exposure on caspase 3/7 activity in
AsPC-1 HPNE and AsPC-1 cells. Cells were exposed to 0, 2, 6, or
14 ppm Cd, control represents cells in growth media, whereas
40001 0 ppm is the assay media (reduced serum) control with no Cd.
* Fluorescence of rhodamine 110 was measured as a direct in-
S 3500 V# dicator of caspase 3/7 activity. Data are expressed as
T mean *= SEM of 4 experiments performed in duplicate. *:
[1'4 P < 0.01 compared to concentration matched HPNE group;
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N
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Fig. 3. Effects of Cd on oxidative stress in HPNE and AsPC-1
cells. Cells were first loaded with 100 uM DCFH for 30 min.
Loading solution was removed, cells washed and warmed.
Krebs containing 0, 2, 6, or 14 ppm Cd were added to the
appropriate wells and allowed to incubate for another 30 min.
Data are expressed as mean *+ SEM of 4 experiments per-
formed in duplicate. *: P < 0.01 compared to concentration
matched HPNE group; A: P < 0.01 compared to cell-matched
0 ppm.
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highest to the lowest category of Cd exposure. The study indicated
significant association between elevated risk of PC among individuals
without occupational exposure particularly in men and Cd exposure.
This is in accordance with our results, although, our data did not de-
termine any gender-related differences which might be the consequence
of the relatively small sample.

Results of the present human study appear to confirm the results of
the previous case-control and cohort studies. Moreover, our results with
reference to quartile analyses indicate that a significant association
between Cd levels and PC risk might exist only at higher Cd exposure
levels suggesting the existence of a threshold above which Cd exposure
becomes a concern. The study revealed significant differences even
between parts of the same sample of pancreatic tissue (malignant/non-
malignant) which is interesting having in mind the very close blood
relationship between tissues. Thus, accumulation of heavy metals in
cancerous pancreatic tissue is evident. No significant difference in Cd
concentration in pancreatic cancerous tissue was observed between
patients younger than 60 and those older than 60 which could evidence
the role of earlier environmental exposure in pancreatic carcinogenesis
as well, yet, only 5 out of 31 cases were younger than 50 which is the
age when Cd reaches its peak in humans (Vuori et al., 1979). However,
the relatively small sample size limits the generalization of these re-
sults.

To the best of our knowledge, this is the first study to investigate the
levels of Cd in pancreatic tissue itself. Other studies have used different
mediums (serum, urine, toenails) as biomarkers of Cd exposure. Serum
concentration of Cd may not reflect chronic exposure typical of many
environmental carcinogenic processes since the half-life of Cd in blood
is only 2 to 3months (Friberg and Elinder, 1993). Urinary Cd con-
centrations have been found to be better indicator of long-term Cd
exposure than blood levels due to accumulation of Cd in the kidney
cortex (Adams and Newcomb, 2014), however studies have shown that
renal damage may lead to higher Cd excretion (Buser et al., 2016). Use
of toenails as a biomarker of Cd exposure might be inadequate having
in mind conflicting data on its relation with environmental Cd exposure
(Vinceti et al., 2007) and its modest reproducibility (White et al., 2018).
By using pancreatic tissue, we showed that the malignant pancreas
accumulates Cd and we were able to determine from in vitro study,
mechanisms by which Cd can contribute carcinogenesis when present
(in measured concentrations) in pancreatic cells. The correlation be-
tween in vivo and in vitro studies is clearly one of the important

14 ;I)pm

strengths of this study. Our finding that concentrations measured in
malignant pancreatic tissue produced oxidative stress and the inhibition
of apoptosis in vitro rule out the possibility that the observed associa-
tion between Cd and PC risk can actually reflect some other association
of etiological interest.

On the other hand, some of the limitations of the study must be
outlined as well. Firstly, the number of subjects included in the study is
relatively small, leading to limited statistical power of the study.
Furthermore, the study was not designed to identify the environmental
sources nor dietary exposure to Cd, hence we were not able to adjust for
other cofounders which could determine Cd exposure. Finally, having
in mind that abnormal expression of multiple genes can contribute to
the incidence of PC (Han et al., 2015), the possibility that different
genetic profiles between cases and controls can account for PC risk
cannot be ruled out.

The part of our study performed on animals confirmed Cd deposi-
tion in pancreas even after acute single exposure with a dose dependent
growing trend of deposition. Similar results were observed in rats
treated with oral dose of 5mg Cd/kg b.w. over 4 weeks (Bashir et al.,
2016). Previous study performed by some of the investigators from our
research group revealed similar pattern in rabbits. After 4 weeks long
oral treatment of rabbits with 10 mg Cd/kg b.w. pancreas was identified
as one of the tissues with a tendency to accumulate Cd (Bulat et al.,
2008). Namely, higher levels of Cd were measured in pancreas
(55.77 = 16.88 umol/kg, i.e. 6.27 + 1.89 ug/g) than in spleen, heart,
lungs, bone, muscle, and brain of treated rabbits. Higher levels of Cd
were determined only in kidneys and liver which are well-established
places of Cd deposition in the organism (ATSDR, 2012; Jarup and
Akesson, 2009).

The biological plausibility of a Cd-PC relation in humans was in-
vestigated in several animal studies directly concerned with Cd carci-
nogenic effects in the animal pancreas. Cadmium is one of the most
potent agents known to induce trans-differentiation of the pancreatic
cells (Waalkes, 2003). Another possible mechanism of Cd carcinogeni-
city that can have important role in PC development is the substitution
of Cd with Zn (Schwartz and Reis, 2000), with regard to Zn essential
role in DNA, RNA, and protein synthesis. These interactions have been
recently shown in our study in rabbits (Bulat et al., 2012, 2008, 2017).
Furthermore, Cd ability to produce oxidative stress was shown in many
other organs of rats, including pancreas as well (Bashir et al., 2016;
Matovié et al., 2013, 2015).
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However, only in vitro analyses can give insight into the exact
mechanisms of these cellular changes following Cd exposure and their
role in the development of PC. In vitro studies conducted in the present
study demonstrated a clear difference between cell lines regarding
caspase activity and oxidative stress. The caspases 3, 6, and 7 are
considered executioner caspases and are intersection point for both the
intrinsic (Bcl/driven) and extrinsic (death receptor-driven) apoptotic
pathways. Also, activation of various caspases occurs prior to cell
reaching the ‘point of no return’ on the apoptotic pathway, thus al-
lowing the cell a chance to repair prior to initiating programmed cell
death. Other investigators have shown that mediators of the intrinsic
pathway such as cytochrome c release and caspase 9 activation, will in
turn activate caspase 3 downstream (Kondoh et al., 2002; Watjen and
Beyersmann, 2004). Control HPNE cells exhibited a significantly higher
basal level of caspase 3/7 activity, indicative of a great ability for
apoptosis. Yet, AsPC-1 cells exhibited a higher level of oxidative stress,
indicative of a higher metabolic rate associated with tumor growth
resulting in an increased burden on mitochondrial respiration. Previous
studies have indicated that Cd exposure will alter caspase activity, and
as such, alter apoptosis. It is becoming clear that a major cellular or-
ganelle that is associated with Cd toxicity is the mitochondria (Belyaeva
et al., 2008). In renal cells, Cd reportedly activates the intrinsic
pathway for initiating apoptosis which involves the activation of cas-
pase 9 and resulting activation of caspase 3, which is similar to the
results we have observed (Sinha et al., 2014). Our data suggests that the
control HPNE cells are somewhat resistant to the effects of Cd. Although
this cell line exhibits a higher basal level of caspase activity (over 3-fold
higher than the AsPC-1 cancer cells), increasing concentrations of Cd
result in a reduction in caspase activity. Using purified caspase 3, we
eliminated the possibility that Cd was interacting directly with the
enzyme and we have also observed that at a exposure concentration of
14 ppm, there is little change in cell viability or cell number (data
unpublished). In pancreatic beta-cells, Cd as low as 10 uM, has been
reported to reduce viability and increase apoptotic activity, mainly via
the intrinsic pathways (Chang et al., 2013). Contrary to our findings
with HPNE cells, the AsPC-1 tumor cells exhibited very low basal ac-
tivity and responded to Cd exposure is a somewhat biphasic manner. At
our highest concentration, AsPC-1 cells exhibited an increase in caspase
3/7 activity. This elevation in caspase has been reported elsewhere in a
variety of tumor cell lines (Belyaeva et al., 2008; Franco et al., 2009;
Kitamura and Hiramatsu, 2010; Liu et al., 2011). Clearly, Cd affects the
activity of the intrinsic apoptotic pathway. Additional studies would be
needed to clarify the mechanisms associated with this change, but Cd’s
ability to affect intrinsic pathway activity, will alter not just caspase
activity but also other apoptotic intermediaries such as p53, Bad, poly
ADP ribose polymerase, and Apafl (Sinha et al., 2014). Multiple studies
have clearly demonstrated that exposure to Cd in vitro leads to an in-
crease in oxidative stress (Abdulkareem Omer Alkharashi et al., 2017;
Gobe and Crane, 2010; Kitamura and Hiramatsu, 2010; Patra et al.,
2011). One hypothesis is that as levels of intracellular Cd rise, mi-
tochondrial will begin to lose function through loss of membrane po-
tential (Abdulkareem Omer Alkharashi et al., 2017). Altered function
would lead to increased free radical formation and a reduced ability to
scavenge the free radicals due to lower energy availability and lower
antioxidant activity (Gobe and Crane, 2010). Eventually the cell will be
overwhelmed and either become senescent or die. Our findings show
that there is a slight biphasic response to increasing concentrations of
Cd. It was previously reported that the biphasic response was due to
length of exposure — with shorter exposures increasing free radical
production, followed by a reduction in free radical generation with
longer exposure durations (Belyaeva et al., 2008). Our data suggests
that there is a concentration-dependent relationship also. Longer ex-
posure times may result in Cd-mediated interaction with other media-
tors of cell function, such as antioxidants like glutathione or superoxide
dismutase, and higher concentrations may elicit the same effect on
other intracellular mediators (Belyaeva et al., 2008). Our data suggest
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that AsPC-1 cells may be compromised with either: 1) reduced
scavenging capabilities, 2) increased free radical production, or 3) a
combination of both 1 and 2. Although increased oxidative stress plays
a significant role in the development and progression of apoptosis
(Chang et al., 2013; Gobe and Crane, 2010; Liu et al., 2011) elevated
free radical generation without the ability to scavenge could lead di-
rectly to cell death (Gobe and Crane, 2010). Collectively, bringing to-
gether the increase in intrinsic pathway apoptotic activity and corre-
sponding elevation in oxidative stress, as well as the potential increased
activity of the extrinsic apoptotic pathway will enable better under-
standing of the cellular actions of Cd. The role that intracellular Cd-
mediated changes in cellular function play could be crucial to fur-
thering our understanding of Cd-mediated carcinogenesis in the pan-
creas.

5. Conclusion

Given that only those diagnosed at an early or precancerous state
have a reasonable expectation of low morbidity and mortality; in-
creased efforts are needed to improve the body of knowledge in the
field of PC etiology. Little is known about the association of widespread
environmental pollutant Cd with other cancers, apart from those in-
dicated by IARC. Our study presented complex data concerning carci-
nogenic potential of Cd in PC. The results support the association be-
tween an increased risk of PC development and Cd environmental
exposure, confirmed by the three different lines of evidence, and ex-
pand the body of knowledge on the role of environment in PC devel-
opment. This is of special importance having in mind that knowing the
patients' environmental history will allow risk stratification prevention,
treatment and further research in this field.
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