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Pentagonal-bipyramidal isothiocyanato Co(II) and Ni(II) complexes with condensation product 

of 2,6-diacetylpyridine and trimethylammoniumacetohydrazide (Girard’s T reagent) were 

synthesized and characterized by elemental analyses, IR and UV-Vis spectra, molar conductivity 

and magnetic susceptibility. Crystal structures of the Co(II) and Ni(II) complexes were also 

determined. Antimicrobial activities of the ligand and metal complexes were examined. 
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1. Introduction 

Schiff bases and their transition metal complexes are studied because of their wide range of 

possible applications [1-3]. Schiff base ligands with additional donors near the azomethine 

nitrogen are able to form stable chelates [3]. Conformational flexibility and large number of 

potential donors of 2,6-diacetylpyridine dihydrazones allow different modes of coordination to 
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metal ions. Most obtained complexes have pentagonal-bipyramidal (PBPY-7) geometry with 

pentadentate coordination of dihydrazone via pyridine nitrogen, two azomethine nitrogens and 

two carbonyl oxygens (N3O2) while apical positions are occupied by monodentate ligands [4-9]. 

Depending on the reaction conditions and nature of the metal, 2,6-diacetylpyridine dihydrazones 

are able to coordinate in neutral (scheme 1a) [4-9], mono- (schemes 1b and 1c) [10] and double-

deprotonated forms (scheme 1d) [11]. Lanthanide complexes with coordination numbers larger 

than seven were reported [12-17] with one dihydrazone ligand and the remaining coordination 

sites occupied with monodentate or bidentate ligands [12-17]; however, in isostructural 

complexes of Pr(III) and Sm(III) two ligands are pentadentate N3O2 coordinated to the metal ion 

[14]. Mono- and binuclear octahedral complexes of Ni(II) with 2,6-diacetylpyridine 

dihydrazones were reported [18-20]. In the mononuclear Ni(II) complex, two monodeprotonated 

dihydrazone ligands are NNO tridentate, coordinated through pyridine nitrogen, azomethine 

nitrogen and carbonyl oxygen [18]. In binuclear Ni(II) complexes, the dihydrazone ligands are 

coordinated to one Ni(II) center through protonated amide oxygen and azomethine nitrogen, 

while the pyridine nitrogen is a bridge between two nickel centers [19, 20]. Dinuclear complexes 

of Zn(II) with octahedral [11] and square-pyramidal geometry [21] around metal centers were 

reported. Reported complexes of Cu(II) with 2,6-diacetylpyridine dihydrazones possess square-

pyramidal geometry with different patterns of dihydrazone ligand coordination [10, 22]. In the 

case of Cu(II) complex with condensation product of 2,6-diacetylpyridine and semioxamazide, 

the ligand is coordinated through pyridine nitrogen and deprotonated hydrazine nitrogen and the 

other neutral chain in the coordination includes only azomethine nitrogen (scheme 1c) [10], 

while in Cu(II) complexes with 2,6-diacetylpyridinebis(benzoic acid hydrazone) the ligand is 

coordinated as N,N’,N’’-tridentate (scheme 1b) [22]. In binuclear Cu(II) complexes with 

2,6-diacetylpyridinebis(benzoic acid hydrazone), each Cu(II) binds to three sites of one ligand 

and two sites of a second ligand [22]. Polynuclear cyanide-bridged compounds consisting of 

alternating pentagonal-bipyramidal complexes of 2,6-diacetylpyridine dihydrazone and cyanide 

complexes of Cr(III), Fe(II) or W(V) as building blocks are interesting for structural but 

magnetic properties [23-25]. Good antimicrobial, genotoxic and SOD activity of 

2,6-diacetylpyridine dihydrazone complexes, in some cases similar to the activity of standard 

drugs, makes them worth investigating because of their potential medicinal use [26-28]. 

Formation of stable lanthanide complexes with this type of ligand allows them to be used in MRI 
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as contrast agents [12, 13]. Because of interesting structural characteristic of 2,6-diacetylpyridine 

dihydrazone complexes and opportunities of applications, we have examined the coordination 

properties of condensation product of 2,6-diacetylpyridine and 

trimethylammoniumacetohydrazide (Girard’s T reagent) and antimicrobial activity of its 

isothiocyanato Co(II) and Ni(II) complexes. 

 

 

Scheme 1. Basic coordination modes of 2,6-diacetylpyridine dihydrazone ligands in: a) neutral; 

b) and c) monodeprotonated; d) double deprotonated form. 

 

2. Experimental 

2.1. Materials and methods 

2,6-Diacetylpyridine (99%) and Girard’s T reagent (99%) were obtained from Aldrich. IR 

spectra were recorded on a Nicolet 6700 FT-IR spectrometer using the ATR technique from 

4000−400 cm−1. Elemental analyses (C, H and N) were performed by standard micro-methods 

using the ELEMENTARVario ELIII C.H.N.S.O analyzer. Molar conductivities were measured 

at room temperature (23 °C) on a digital conductivity-meter JENWAY-4009. UV–Vis spectra 

were recorded on a Shimadzu 1800 UV-Vis spectrometer. Magnetic measurements were 

performed at 26 °C by Evans’ method using an MSB-MK1 balance (Sherwood Scientific Ltd.) 

with Hg[Co(SCN)4] as calibrant; diamagnetic corrections were calculated from Pascal’s 

constants. 
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2.2. Synthesis of H2LCl2 

H2LCl2 was obtained by the condensation reaction of 2,6-diacetylpyridine and 

trimethylammoniumacetohydrazide chloride (Girard’s T reagent) using a previously reported 

method [9]. Yield: 0.23 g (87%). IR: 3394 (s), 3115 (m), 3071 (m), 3020 (m), 2969 (w), 

2934 (w), 1709 (vs), 1630 (w), 1568 (w), 1489 (m), 1423 (m), 1366 (w), 1329 (w), 1281 (m), 

1228 (m), 1153 (w), 1123 (w), 993 (w), 949 (w), 922 (w), 855 (w), 827 (w), 744 (w), 702 (w) 

and 663 (w). Anal. Calcd. for C19H41N7O6Cl2 (%): C, 42.70; H, 7.73; N, 18.34. Found: C, 42.73; 

H, 7.69; N, 18.35. 

 

2.3. Synthesis of Co(H2L)(NCS)2](SCN)2 and [Co(H2L)(NCS)2][Co(NCS)4 

CoCl2·6H2O (0.04 g, 0.25 mmol) and H2LCl2 (0.13 g, 0.25 mmol) were dissolved in methanol 

(20 mL), then solid NH4SCN (0.08 g, 1.00 mmol) was added. The reaction mixture was refluxed 

for 2 h at 65 °C. Slow evaporation of the reaction solution resulted in formation of 

[Co(H2L)(NCS)2](SCN)2 (red crystals) and [Co(H2L)(NCS)2][Co(NCS)4] (green crystals) which 

can be easily separated by fractional crystallization. 

[Co(H2L)(NCS)2](SCN)2: Yield: 0.06 g (~33%). IR: 3609 (w), 3379 (w), 3125 (w), 3019 

(w), 2966 (w), 2071 (vs), 2034 (vs), 1661 (m), 1634 (w), 1537 (m), 1478 (m), 1440 (w), 1272 

(w), 1206 (w), 1169 (w), 1127 (w), 1085 (w), 1022 (w), 968 (w), 922 (w), 812 (w), 740 (w) and 

626 (w). Found: C, 38.33; H, 5.14; N, 21.39; S, 17.88. λmax (nm) (1 mM, H2O): 272, 301, 365. 

μeff = 4.98 B.M. ΛM (1 mM, H2O): 254 Ω–1 cm2 mol–1. 

[Co(H2L)(NCS)2][Co(NCS)4]: Yield: 0.12 g (~54%). IR: 3410 (w), 3188 (w), 3023 (w), 

2918 (w), 2108 (s), 2073 (vs), 1667 (m), 1636 (w), 1551 (w), 1517 (w), 1466 (w), 1263 (w), 

1170 (w), 966 (w), 914 (w) and 811 (w). Found: C, 33.49; H, 4.12; N, 20.31; S, 21.47. λmax (nm) 

(1 mM, H2O): 270, 300, 358. μeff = 2.65 B.M. ΛM (1 mM, H2O): 241 Ω–1 cm2 mol–1. 

 

2.4. Synthesis of [Ni(H2L)(NCS)2](SCN)2 

NiCl2·6H2O (0.06 g, 0.25 mmol) and H2LCl2 (0.13 g, 0.25 mmol) were dissolved in acetonitrile 

(20 mL) and solid NH4SCN (0.08 g, 1.00 mmol) was added. The reaction mixture was heated for 

2 h at 65 °C. After two weeks green crystals precipitated from the solution. Yield: 0.15 g 

(~83%). IR: 3123 (w), 3019 (w), 2965 (w), 2910 (w), 2805 (w), 2093 (vs), 2046 (vs), 1685 (s), 



5 

1626 (w), 1552 (m), 1479 (m), 1441 (w), 1266 (w), 1189 (w), 1122 (w), 968 (w), 918 (w), 

818 (w) and 760 (w). Found: C, 38.49; H, 5.12; N, 21.35; S, 17.81. λmax (nm) (1 mM, H2O): 266, 

300, 363. μeff = 3.94 B.M. ΛM (1 mM, H2O): 265 Ω–1 cm2 mol–1. 

 

2.5. Synthesis of [Mn(H2L)(NCS)2](SCN)2 

[Mn(H2L)(NCS)2](SCN)2 was synthesized according to previously described procedure [9]. 

Anal. Calcd. for C24H37N11MnO3S4 (%): C, 40.55; H, 5.25; N, 21.68; S, 18.04. Found: C, 40.39; 

H, 5.14; N, 21.45; S, 18.12. 

 

2.6. X-ray structure determination 

Crystal data and refinement parameters of [Co(H2L)(NCS)2](SCN)2, 

[Co(H2L)(NCS)2][Co(NCS)4] and [Ni(H2L)(NCS)2](SCN)2 are listed in table 1. The X-ray 

intensity data were collected at 150 K with an Agilent SuperNova dual source using an Atlas 

detector and equipped with mirror-monochromated MoKα radiation (λ = 0.71073 Å) for 

[Co(H2L)(NCS)2](SCN)2 and [Ni(H2L)(NCS)2](SCN)2 and CuKα radiation (λ = 1.54184 Å) for 

[Co(H2L)(NCS)2][Co(NCS)4]. The data were processed using CRYSALIS PRO [29]. The 

structures were solved using SIR-92 [30] or SHELXS-97 [31] and refined by full-matrix least-

squares based on F2 using SHELXL-97 [31]. All non-hydrogen atoms were refined 

anisotropically. The N2 and N6 bonded hydrogens in all complexes were located in a difference 

map and refined with the distance restraints (DFIX) with N-H = 0.88 and Uiso(H) = 1.2Ueq(N). In 

the final model of refinement some residual density peaks were found in all structures. These 

peaks are unrefineable and probably an indication of additional solvent molecules. The water 

molecule in [Co(H2L)(NCS)2](SCN)2 is disordered over a two-fold rotation axis. Water 

molecules in [Ni(H2L)(NCS)2](SCN)2 were unrefinable and excluded from the model. From the 

elemental analysis we can conclude the proper formula of [Co(H2L)(NCS)2](SCN)2 and 

[Ni(H2L)(NCS)2](SCN)2. 

CCDC 1429633-1429635 contains the supplementary crystallographic data for 

[Co(H2L)(NCS)2](SCN)2, [Co(H2L)(NCS)2][Co(NCS)4] and [Ni(H2L)(NCS)2](SCN)2, 

respectively. These data can be obtained free of charge from the Cambridge Crystallographic 

Data Centre via www.ccdc.cam.ac.uk/data_request/cif. 
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2.7. Antimicrobial activity 

Antimicrobial activity was tested against eight laboratory control strains of microorganisms, i.e. 

Gram-positive bacteria: Staphyloccocus aureus, Staphyloccocus epidermidis and Bacillus 

subtilis, Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, Pseudomonas 

aeruginosa and Salmonella enterica, and one strain of yeast Candida albicans. Minimum 

inhibitory concentration (MIC) was determined by broth micro dilution test according to Clinical 

and Laboratory Standards Institute guidelines [32]. The tested compounds were dissolved in 1% 

(v/v) DMSO (except ligand which was dissolved in H2O). Twofold dilutions of compounds and 

reference drug were prepared. All tests were performed in Müller-Hinton broth for the bacterial 

strains and Sabouraud dextrose broth for C. albicans. All of the MIC determinations were 

performed in duplicate, and two positive growth controls were included. 2,3,5-Triphenyl-2H-

tetrazolium chloride (Sigma-Aldrich) was used in concentration 0.05% as a growth indicator for 

tested microbial strains (5×106 CFU/mL). MICs were determined after incubation for 24 h at 

35 °C in aerobic conditions. 

 

3. Results and discussion 

3.1. Chemistry 

H2LCl2 was synthesized from reaction of 2,6-diacetylpyridine and trimethylammoniumaceto-

hydrazide chloride using the previously reported method (scheme 2) [9]. 
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Scheme 2. Synthesis of H2LCl2 from 2,6-diacetylpyridine (top left) and Girard’s T reagent 

(bottom left). 

 

Isothiocyanato complexes of Co(II) and Ni(II) were synthesized performing direct and 

template methods of synthesis. Both direct and template synthesis of Co(II) complexes resulted 

in formation of two complexes with the same complex cation, but different anions, i.e. 

thiocyanate anions in [Co(H2L)(NCS)2](SCN)2 and anionic tetrahedral complex [Co(NCS)4]
2– in 

[Co(H2L)(NCS)2][Co(NCS)4] (scheme 3). 
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Scheme 3. Synthesis of [Co(H2L)(NCS)2](SCN)2 and [Co(H2L)(NCS)2][Co(NCS)4]. 

 

[Ni(H2L)(NCS)2](SCN)2 was isolated only in direct reaction, while template reaction 

resulted in decomposition of unstable complex to the starting compounds (scheme 4). 

 

 

Scheme 4. Synthesis of [Ni(H2L)(NCS)2](SCN)2. 
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[Mn(H2L)(NCS)2](SCN)2 was obtained according to the previously published 

method [9]. 

The ligand and the complexes were characterized by elemental analysis, IR and UV-Vis 

spectroscopy, conductometric and magnetic measurements and X-ray analysis. 

Coordination of the carbonyl oxygen in [Co(H2L)(NCS)2](SCN)2, 

[Co(H2L)(NCS)2][Co(NCS)4] and [NiH2L(NCS)2](SCN)2 results in bathochromic shift of the 

ν(C=O) from 1709 cm−1 in the spectrum of H2LCl2 to 1661 cm−1 in the spectrum of 

[Co(H2L)(NCS)2](SCN)2, 1667 cm−1 in the spectrum of [Co(H2L)(NCS)2][Co(NCS)4] and 

1685 cm−1 in the spectrum of [Ni(H2L)(NCS)2](SCN)2 [9]. In IR spectra of complexes ν(C=N) 

bands shift from 1630 cm−1 in the spectrum of H2LCl2 to 1634 cm−1 in [Co(H2L)(NCS)2](SCN)2, 

1636 cm−1 in [Co(H2L)(NCS)2][Co(NCS)4] and 1626 cm−1 in [Ni(H2L)(NCS)2](SCN)2 

suggesting coordination of the azomethine nitrogen [9]. Two bands in the ν(CN) vibration range 

of NCS− at 2108 cm−1 and 2073 cm−1 in IR spectrum of [Co(H2L)(NCS)2][Co(NCS)4] originate 

from N coordinated thiocyanato ligands. The band at higher energy corresponds to 

isothiocyanato ligands from tetrahedral [Co(NCS)4]
2–, while the band at lower energy originates 

from isothiocyanato ligands in the complex cation. In the spectrum of [Co(H2L)(NCS)2](SCN)2 

the band at 2071 cm−1 can be attributed to the SCN− group coordinated through its nitrogen and 

the band at lower energy 2034 cm−1 originates from non-coordinated SCN−. Similarly, the band 

at 2092 cm−1 in the spectrum of [Ni(H2L)(NCS)2](SCN)2 corresponds to coordinated 

isothiocyanate, while the band at 2046 cm−1 can be assigned to uncoordinated SCN− [33]. 

The observed electronic absorption spectra of [Co(H2L)(NCS)2](SCN)2 and 

[Co(H2L)(NCS)2][Co(NCS)4] indicate the presence of the same pentagonal-bipyramidal complex 

cation in aqueous solution [34]. In the case of [Co(H2L)(NCS)2][Co(NCS)4] transformation 

presented with equation 1 occurred in aqueous solution. The absence of absorption maximum at 

625 nm (ε = 1800 M–1 cm–1) corresponding to tetrahedral isothiocyanato Co(II) complex is not 

surprising because of its low stability in water (Kf = 10–3 M-1) [35]. These results are consistent 

with the observed values of molar conductivity of [Co(H2L)(NCS)2](SCN)2 and 

[Co(H2L)(NCS)2][Co(NCS)4] corresponding to 1:2 electrolytes [36, 37]. 

 

[Co(H2L)(NCS)2)][Co(NCS)4] → [Co(H2L)(NCS)2)]
2+ + [Co(NCS)4]

2– 

[Co(NCS)4]
2– + 6H2O  [Co(H2O)6]

2+ + 4SCN– 
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[Co(H2L)(NCS)2)][Co(NCS)4] + 6H2O  [Co(H2L)(NCS)2)]
2+ + [Co(H2O)6]

2+ + 4SCN–     (1) 

 

The observed magnetic moment of [Co(H2L)(NCS)2](SCN)2 (μeff = 4.98 B.M.) and 

[Ni(H2L)(NCS)2](SCN)2 (μeff = 3.94 B.M.) can be attributed to high-spin complexes with three 

and two unpaired electrons, respectively [38]. 

 

3.2. Crystal structures 

Crystals suitable for X-ray analysis were obtained by slow evaporation of solvent at room 

temperature. Selected bond lengths and angles are given in table 2. The structures of all three 

complexes possess pentadentate 2,6-diacetylpyridine dihydrazone ligand forming four fused 

five-membered chelate rings. Two additional SCN– ligands fulfill coordination number seven 

forming distorted pentagonal-bipyramidal coordination geometries. The coordination geometry 

of cationic complex in [Co(H2L)(NCS)2](SCN)2, [Co(H2L)(NCS)2][Co(NCS)4] and 

[Ni(H2L)(NCS)2](SCN)2 is close to other pentagonal-bipyramidal complexes with N3O2 donor 

sets [4-9]. 

The cationic part of [Co(H2L)(NCS)2](SCN)2 is depicted in figure 1. Two uncoordinated 

SCN– ligands are connected via two N–H···N hydrogen bonds (figure S1, table S1). 

In [Co(H2L)(NCS)2][Co(NCS)4], the counter ion of cationic cobalt-ligand complex is 

anionic tetrahedral [Co(NCS)4]
2– instead of two SCN– ligands (figure 2). In the solid state of 

[Co(H2L)(NCS)2][Co(NCS)4], the cations are connected by N–H···S hydrogen bonds into infinite 

chains. Additional N–H···O and O–H···O hydrogen bonds exist between complex cation and 

uncoordinated water (figure S2, table S1). 

The crystal structure of [Ni(H2L)(NCS)2](SCN)2 (figure 3) is isomorphous with the 

structure of [Co(H2L)(NCS)2](SCN)2. The crystal space group and cell dimensions are almost 

identical regardless of nickel as the central ion. The hydrogen bonding topology in 

[Ni(H2L)(NCS)2](SCN)2 (identical to [Co(H2L)(NCS)2](SCN)2) is depicted in figure S3 

(table S1). In the crystals of isostructural complex cations [M(H2L)(NCS)2]
2+ (M = Co(II) and 

Ni(II)) form dimers through the C-H⋅⋅⋅π interactions (H14B⋅⋅⋅Cg distance is 2.90 Å, where Cg is 

the center of gravity of the pyridine ring). Dimers are illustrated in the Supplementary Material 

(figure S4). In [Mn(H2L)(NCS)2](SCN)2, the complex cations [Mn(H2L)(NCS)2]
2+ also form 

dimers, but through π⋅⋅⋅π interactions between pyridine rings [9]. 
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3.3. Antimicrobial activity 

The antimicrobial activities of H2LCl2, [Co(H2L)(NCS)2][Co(NCS)4], [Co(H2L)(NCS)2](SCN)2 

and [Ni(H2L)(NCS)2](SCN)2, as well as previously synthesized [Mn(H2L)(NCS)2](SCN)2, were 

examined against Gram-positive bacteria: Staphyloccocus aureus, Staphyloccocus epidermidis 

and Bacillus subtilis, Gram-negative bacteria: Escherichia coli, Klebsiella pneumoniae, 

Pseudomonas aeruginosa and Salmonella enterica, and one strain of yeast Candida albicans 

using a micro broth dilution assay. The observed MIC values for the complexes were much 

higher than that for gentamicin, ceftriaxone and amphotericin B (table 3). The ligand and 

corresponding salts (CoCl2·6H2O, NiCl2·6H2O, MnCl2·2H2O and NH4SCN) were inactive. All 

the complexes showed the most pronounced activity against Gram positive bacteria S. aureus 

and S. epidermidis. Among the Co(II) complexes better activity was observed for 

[Co(H2L)(NCS)2](SCN)2. The low stability of [Co(NCS)4]
2– in water solution (equation 1) 

makes it clear that the presence of pentagonal-bipyramidal complex cation is crucial for 

antimicrobial activity of Co(II) complexes. Coordination of metal ions to 2,6-diacetylpyridine 

dihydrazone results in increased activity of the corresponding complexes, which can be 

explained on the basis of chelation theory [39-41]. Metal ion chelates are more capable to 

penetrate through cell membrane of microorganism due to electron delocalization over the whole 

chelate ring and sharing of positive charge of metal ions with donor atoms of ligands [41]. The 

central metal in pentagonal-bipyramidal complex has influence on antimicrobial activity of 

compounds. Among the investigated complexes the best activity was observed for Mn(II) 

complex. 

 

4. Conclusion 

The synthesized high-spin pentagonal-bipyramidal isothiocyanato complexes of Co(II) and 

Ni(II) with pentadentate 2,6-diacetylpyridine bis(trimethylammoniumacetohydrazone) ligand 

coordinated in equatorial plane via N3O2 donor set and two additional SCN– ligands in apical 

positions. Coordination of 2,6-diacetylpyridine bis(trimethylammoniumacetohydrazone) leads to 

the improved activity against Gram positive bacteria, but the observed MIC values are higher 

than those of standard antibacterial and antifungal drugs. Schiff base ligand containing 

trimethylammoniumacetohydrazone and metal complexes showing stronger activity than 
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[Co(H2L)(NCS)2][Co(NCS)4], [Co(H2L)(NCS)2](SCN)2, [Ni(H2L)(NCS)2](SCN)2 and 

[Mn(H2L)(NCS)2](SCN)2 are reported. The presence of quaternary ammonium salt improves 

solubility of complexes in water, while the nature of metal ion and donors from hydrazone and 

monodentate ligands dictate their geometry [42-46]. Further systematic research of coordination 

and pharmacological properties of Schiff base ligands containing trimethylammoniumaceto-

hydrazone are necessary to elucidate the structure-activity relationship. 
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Table 1. Crystal data and structure refinement details for [Co(H2L)(NCS)2](SCN)2, [Co(H2L)(NCS)2][Co(NCS)4] and 
[Ni(H2L)(NCS)2](SCN)2. 

 [Co(H2L)(NCS)2](SCN)2 [Co(H2L)(NCS)2][Co(NCS)4] [Ni(H2L)(NCS)2](SCN)2 

Formula  C23H37CoN11O4S4 C25H37Co2N13O4S6 C23H37N11NiO4S4 

Fw (g mol–1) 718.81 893.90 718.59 

Crystal size (mm) 0.50 × 0.40 × 0.30 0.30 × 0.20 × 0.02 0.50 × 0.30 × 0.10 

Crystal color Red Green Green 

Radiation, wavelength (Å) MoKα, 0.71073 CuKα, 1.54184 MoKα, 0.71073 

Crystal system Monoclinic Monoclinic Monoclinic 

Space group I 2/a P 21/n I 2/a 

a (Å) 18.0935(6) 20.9201(7) 18.0808(6) 

b (Å) 13.1154(4) 9.0845(2) 13.2134(4) 

c (Å) 27.6303(9) 21.0055(6) 27.5013(10) 

β (°) 104.165(3) 91.356(3) 104.270(4) 

V (Å3) 6357.4(4) 3991.0(2) 6367.6(4) 

Z 8 4 8 

Calcd density (g cm-3) 1.502 1.488 1.499 

F(000) 3000 1840 3008 

Collected reflns. 19566 14377 20299 

Independent reflns. 7285 7722 7299 

Rint 0.0283 0.0721 0.0295 

Reflns. observed 5986 5044 6134 

Parameters 399 477 384 

R[I > 2σ (I)]a 0.0718 0.0702 0.0550 

wR2 (all data)b 0.2123 0.1966 0.1741 

Goof, Sc 1.028 1.030 1.031 

Maximum/minimum residual 
electron density (e Å–3)  

+2.28/–1.82 +1.67/–0.74 +3.06/–0.98 

a R = ∑||Fo| – |Fc||/∑|Fo|. 
b wR2 = {∑[w(Fo

2 – Fc
2)2]/∑[w(Fo

2)2]}1/2. 
c S = {∑[w(Fo

2 – Fc
2)2]/(n/p}1/2 where n is the number of reflections and p is the total 
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Table 2. Selected bond lengths (Å) and angles (°) of [Co(H2L)(NCS)2](SCN)2, 
[Co(H2L)(NCS)2][Co(NCS)4] and [Ni(H2L)(NCS)2](SCN)2.* 

 [Co(H2L)(NCS)2](SCN)2 [Co(H2L)(NCS)2][Co(NCS)4] [Ni(H2L)(NCS)2](SCN)2 

M–N3 2.191(3) 2.171(4) 2.157(3) 
M–N4 2.188(3) 2.180(4) 2.015(3) 
M–N5 2.207(3) 2.194(5) 2.139(3) 
M–N8 2.048(3) 2.097(5) 1.997(3) 
M–N9 2.094(4) 2.087(5) 1.989(3) 
M–O1 2.290(3) 2.192(4) 2.573(3) 
M–O2 2.291(3) 2.219(4) 2.544(2) 
    
O1–M–N3 70.69(10) 71.77(15) 67.99(10) 
O1–M–N4 140.36(12) 142.57(16) 143.26(10) 
O1–M–N5 148.95(13) 147.30(15) 141.75(9) 
O1–M–N8 88.36(12) 86.63(17) 81.60(11) 
O1–M–N9 82.85(13) 88.79(17) 82.05(10) 
O1–M–O2 78.41(10) 76.99(15) 73.82(7) 

* M = Co ([CoH2L(NCS)2](SCN)2, [CoH2L(NCS)2][Co(NCS)4]); Ni [NiH2L(NCS)2](SCN)2. 
 



2 

Table 3. Minimum inhibitory concentration of investigated compounds (values in μg/mL). 

Microorganis

m 
[Co(H2L)(NCS)2](SCN

)2 

[Co(H2L)(NCS)2][Co(NCS)

4] 

[Ni(H2L)(NCS)2](SCN

)2 

[Mn(H2L)(NCS)2](SCN

)2 

gentamici

n 

ceftriaxon

e 

amphoterici

n B 

S. aureus 

ATCC 6538 

1000.0 1000.0 500.0 500.0 0.5 0.5 n.t. 

S. epidermidis  

ATCC 12228 

125.0 1000.0 500.0 125.0 0.5 0.5 n.t. 

B.subtilis  

ATCC 6633 

1000.0 >1000.0 1000.0 1000.0 0.5 1.0 n.t. 

E. coli 

ATCC 10536 

1000.0 >1000.0 1000.0 >1000.0 1.0 2.0 n.t. 

K. 

pneumoniae  

ATCC 13883 

1000.0 1000.0 1000.0 >1000.0 1.0 2.0 n.t. 

P. aeruginosa  

ATCC 9027 

1000.0 >1000.0 1000.0 >1000.0 3.5 >4.0 n.t. 

S. enterica  

NCTC 6017 

1000.0 >1000.0 1000.0 >1000.0 2.0 2.0 n.t. 

C. albicans  

ATCC 10231 

1000.0 1000.0 1000.0 <1000.0 n.t. n.t. 1.0 

n.t. – not tested 
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Figure captions 
 
 
Figure 1. Graphical representation of [Co(H2L)(NCS)2](SCN)2. Non-coordinated SCN– ions and 
solvate water molecules are omitted for clarity. 
 
Figure 2. Graphical representation of [Co(H2L)(NCS)2][Co(NCS)4]. 
 
Figure 3. Graphical representation of [Ni(H2L)(NCS)2](SCN)2. Solvate water molecules are not 
included in the refinement model because of poor quality data. 
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