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Abstract

CYP2C19 and CYP2D6 are important drug-metabolizing enzymes that are involved in the metabolism of around 30% of all
medications. Importantly, the corresponding genes are highly polymorphic and these genetic differences contribute to
interindividual and interethnic differences in drug pharmacokinetics, response, and toxicity. In this study we systematically
analyzed the frequency distribution of clinically relevant CYP2C19 and CYP2D6 alleles across Europe based on data from
82,791 healthy individuals extracted from 79 original publications and, for the first time, provide allele confidence intervals
for the general population. We found that frequencies of CYP2D6 gene duplications showed a clear South-East to North-
West gradient ranging from <1% in Sweden and Denmark to 6% in Greece and Turkey. In contrast, an inverse distribution
was observed for the loss-of-function alleles CYP2D6*4 and CYP2D6*5. Similarly, frequencies of the inactive CYP2C19%2
allele were graded from North-West to South-East Europe. In important contrast to previous work we found that the
increased activity allele CYP2CI19%17 was most prevalent in Central Europe (25-33%) with lower prevalence in
Mediterranean-South Europeans (11-24%). In summary, we provide a detailed European map of common CYP2C/9 and
CYP2D6 variants and find that frequencies of the most clinically relevant alleles are geographically graded reflective of
Europe’s migratory history. These findings emphasize the importance of generating pharmacogenomic data sets with high
spatial resolution to improve precision public health across Europe.

Introduction

Interindividual variability in therapeutic drug response can
result in adverse drug reactions (ADRs) or lack of efficacy
and constitutes a key challenge for health care systems.
Notably, 40-70% of patients experience insufficient drug
response or drug toxicity and ADRs account for 6.5% of all
hospital admissions of which up to 30% are life threatening in
at-risk subpopulations [1-4]. Genetic polymorphisms in drug-
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metabolizing enzymes, transporters, or drug targets explain
around 20-30% to these interindividual differences [5].

Cytochrome P450 (CYP) enzymes constitute a poly-
morphic superfamily, consisting of 57 functional members
in humans [6], that metabolize >80% of all clinically used
medications [7]. Among those, CYP2C19 and CYP2D6 are
of particular clinical relevance, as they are highly poly-
morphic and implicated in the metabolism of numerous
widely prescribed drugs. CYP2C19 substrates include the
tricyclic antidepressants amitriptyline, clomipramine, dox-
epin and imipramine, the selective serotonin reuptake
inhibitors citalopram and sertraline, the antifungal vor-
iconazole, as well as the antiplatelet agent clopidogrel.
CYP2C19%2 (rs4244285) is the most common allelic var-
iant in Caucasians and results in aberrant splicing and loss-
of-enzyme activity [8]. In contrast, the regulatory poly-
morphism rs12248560 defining CYP2CI9*17 increases
transcriptional activity and causes the ultrarapid CYP2C19
metabolism [9].

CYP2D6 metabolizes around 25% of currently prescribed
drugs, including various antidepressants, neuroleptics, beta-
blockers, opioids, antiemetics, and antiarrthythmics. Of the
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more than 100 allelic variants for CYP2D6 that have been
described so far, CYP2D6*4 (rs3892097) is the most pre-
valent loss-of-function allele in Caucasian individuals. Fur-
thermore, CYP2D6 harbors functionally relevant copy
number variations (CNVs) in which the whole open reading
frame is  duplicated (e.g., CYP2D6*IxN  and
CYP2D6*2xN) or deleted (CYP2D6%*5), resulting in
increased or decreased metabolism of CYP2D6 substrates,
respectively.

While frequencies of CYP2C19 and CYP2D6 variations
have been extensively studied, these studies were either
focused on selected geographical regions or analyzed data
aggregated by ethnicity or ancestry [10—12]. Therefore, in
the present study, we systematically analyzed 79 original
publications covering 82,791 healthy volunteers throughout
Europe for CYP2C19 and CYP2D6 variants to provide a
high-resolution map of pharmacogenetically relevant
variability across European populations. Analysis of this
consolidated data set revealed that the loss-of-function
variants CYP2C19%*2, CYP2D6%4, and CYP2D6*5 were
graded from Northern Europe to the Mediterranean,
whereas CYP2D6 duplications showed an inverse pattern.
Furthermore, in contrast to previous reports we find clear
evidence that CYP2CI9*17 is most common in Central
Europe, whereas prevalence is lower in South Europeans.
Combined, these data reveal the extent of intra-European
pharmacogenetic variability and underscore the importance
of using local genomic information for conducting phar-
macogenetic analyzes, clinical trials, and precision public
health.

Methods

For the present study we performed a systematic literature
survey of the PubMed database covering articles published
before December 2018. The search query criteria were
(CYP2C19 or CYP2D6) AND (allele OR genotype OR fre-
quency OR prevalence OR polymorphism) AND
(European). All studies reporting genotype or allele
frequencies of CYP2CI19*2 (rs4244285; NC_000010.11:
294781859 G > A), CYP2C19*17 (rs12248560; NC_000010.
11:2.94761900C > T), CYP2D6*3 (1s35742686; NC_000022.
11:2.42128242delT), CYP2D6*4 (1s3892097; NC_000022.
11:2.42128945C > T), CYP2D6*5 (CYP2D6 gene deletion),
or of functional gene duplications (CYP2D6*IxN or
CYP2D6*2xN) in healthy individuals of clear geographic
origin within a European country were included. Variant
positions are provided based on GRCh38. Only original
research articles available in English were considered. In
addition, we included data from the Genome Aggregation
Database [13], the 1000 Genomes Project [14], the SweGen
project [15], and the Estonian biobank [16]. As a result, we

identified 79 original articles and 82,791 individuals were
included in the analysis (Supplementary Tables 1 and 2). For
countries for which multiple studies were available, data were
aggregated using a weighted average approach using the
studies’ cohort sizes as weighting factor. For additional
information about the haplotypes in question we refer the
interested reader to the website of the Pharmacogene Variation
Consortium (https://www.pharmvar.org).

Results

Frequencies of important CYP2C19 alleles exhibit
large intra-European differences

For CYP2CI9 we assessed the prevalence of the loss-of-
function allele CYP2CI9*2 and the increased function
variant CYP2C19*17. In Europe, the frequency of
CYP2C19*2 was the highest in Cyprus (21%) and Malta
(20%), whereas the lowest prevalence was reported in
Czech Republic (8%; Fig. 1; Table 1). Furthermore, fre-
quencies were high in Romani individuals (20.8%). Overall,
CYP2C19%2 was slightly more prevalent in Northern and
Western European countries, such as Finland (17.5%), the
Faroe Islands (18.8%), and France (17.7%), compared with
countries on the Mediterranean coast, including Italy
(11.8%) and Turkey (11.3%).

On the contrary, CYP2C19*]7 was most common in
Central Europe with highest frequencies in Slovakia (33%),
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Fig. 1 European map of CYP2C19%*2 allele frequencies. The lowest
frequencies were found in the Czech republic (8%, green), whereas
highest frequencies were described in Cyprus (21%). Frequency in
Romania (indicated by asterisk) refers exclusively to the Romani
population
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Table 1 Frequencies of important CYP2C19 and CYP2DG6 alleles in Europe

Functional consequence

Frequency in %

Country/Geographic region Studies Individuals CYP2CI19 CYP2D6
*2 *17 *3 *4 *5 Dupl
Inactive Increased function Inactive Inactive Inactive  Increased function
Austria 1 93 / / 0.5(1.2) 14 (5.9 1.6 (2.1) 1.6 (2.1
Belgium 1 121 9.1 43) / / / / /
Croatia 3 1119-1247 152 (1.7) 23.5(2) 23(0.7) 16.7(1.7) 1(0.5) 3.4(0.8)
Cyprus 1 40 21 (10.6) 11 (8.1) 4(.1) 2110.6) / /
Czech Republic 2 42-265 8 (2.7 29 (4.6) 1.6 (1.3) 21.6(42) 3.1(1.8) /
Denmark 3 579-634 15.8 (2.4) 20.1 (2.6) 22 (1) 2052.6) 59((.5 0.8(0.6)
Estonia 1 35,506-44,448 13.5 (0.3) 26.4 (0.3) 1.8 (0.1) 16.7 (0.3) 1.5(0.1) 0.3 (0.04)
Faroe Islands 2 309-311 18.8 (3.6) 154 (3.4) 0.2 (04) 33444 / /
Finland 6 12,589-13,956 17.5 (0.5) 19.6 (0.6) 35(0.3) 10(04) 22(0.2) 43(0.3)
France 3 607 17.7 2.6) / / / / /
Germany 8 923-1758 149 (1.4) 249 (1.7) 1.1 (0.4) 19.6 (1.6) 3.2 (0.7) 1.3(0.4)
Greece 3 327 14.1 (3.2) 18.2 (3.5) 2.1 (1.3) 17.7.(3.5) / 6(2.2)
Hungary 4 530-591 13.3 (2.3) 23 (2.9) 1.6 (0.9) 19 (2.7) 1.8 (0.9) 1.8 (0.9)
Italy 8 914-917 11.8 (1.8) 22.1 (2.3) 1 (0.5) 164 (2) 24(0.8) 3(0.9)
Lithuania 1 20 19 (14.4) 25 (15.9) 2(5.2) 24157 / /
Malta 1 41 20 (10.3) 26 (11.3) 0 18(9.9) / /
Netherlands 5 1114-1158 14.1 (1.7) 19 (1.9) 1.5 (0.6) 18.9 (1.9) / /
Norway 3 83-403 153 3) 22(3.4) 0 21.1 (3.3) 6(2) /
Orkney Islands 1 88 10.8 (5.4) / / / / /
Poland 5 166-791 16.3 (2.2) 29.8 (2.7) 1.6 (0.7) 20.8 2.4) / /
Portugal 4 279-400 134 (2.8) / 0.7 (0.7) 17 (3.1) 26(1.3) 3(1.4)
Republic of North Macedonia 2 100-184 144 (4.3) 20.1 4.9 2 (1.7 17 (4.6) 1.5 (1.5) 25(1.9)
Romania (Romani) 3 426-562 20.8 2.8) / / 22.52.9) / /
Russia 4 391-1663 13.6 (1.4) 15(1.4) 1.2 (04) 17.6 (1.5) 1.6 (0.5) 2.4 (0.6)
Sardinia 2 76 / / 2.6 (3) 15.8 (6.9) 13 (2.1) 2(2.6)
Serbia 1 46 11 (7.6) 18 (9.3) 0 16 8.9) / /
Slovakia 1 26 19 (12.7) 33 (15.2) 245 28@145) / /
Slovenia 3 1952-2081 12.7 (1.2) 23 (1.5) 1.8 (0.5) 16.8 (1.3) / /
Spain 14 1215-2328 14 (1.2) 17.1 (1.3) 1.2 (04) 18.6 (1.3) 23 (0.5) 3.5(0.6)
Sweden 6 1816-2020 14 (1.3) 19.2 (1.4) 1.6 (0.5) 20.7 (1.5) 4.1 (0.7) 0.5 (0.3)
Turkey 6 689-785 11.3 (1.9) 24 (2.5) 0.7 (0.5) 132 (2) 1.8 (0.8) 5.6(1.4)
Ukraine 2 52-689 13 2.1) 25@27 2 (0.9) 189 (2.5) / /
United Kingdom 2 91-168 134 (43) 242 (54) 33(23) 24254 / /

Note that the number of individuals in a given country or geographic region for whom genotype data are available can differ between alleles.

Values in brackets indicate the 90% confidence intervals

Poland (29.8%), and the Czech Republic (29%; Fig. 2);
Table 1. However, the CYP2C19 genotyping data reported
for Slovakia included only 26 subjects and should thus be
interpreted with caution [17]. In contrast, frequencies were
lower in Southern European countries, such as Spain
(17.1%), Greece (18.2%), and Cyprus (11%), as well as
Scandinavia (19-22%) and Russia (15%).
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CYP2D6 gene duplications are graded from South-
East to North-West Europe

Functional duplications of CYP2D6 (CYP2D6*IxN and
CYP2D6*2xN) were most prevalent in the South-East
European countries Greece (6%) and Turkey (5.6%), while
lower frequencies were found in South-Western Europe,
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17.1

Fig. 2 European map of CYP2C19*17 allele frequencies. The lowest
frequencies were found in Cyprus (11%, green), whereas highest
frequencies were described in Slovakia (33%)

including Spain (3.5%), Italy (3%), and Portugal (3%;
Fig. 3; Table 1). In contrast, frequencies in Northern and
Central Europe, including Austria (1.6%), Germany (1.3%),
Denmark (0.8%), and Sweden (0.5%), were substantially
lower. Surprisingly, CYP2D6 duplications were common in
Finland (4.3%) at levels similar to Southern Europe.

CYP2D6 loss-of-function alleles are distributed along
a North-to-South gradient

Importantly, the CYP2D6 loss-of-function alleles
CYP2D6%4 and CYP2D6*5 showed an inverse profile
(Fig. 4; Table 1). CYP2D6*4 was most prevalent through-
out Northern and Central Europe with frequencies pivoting
around 20-25%. The highest CYP2D6*4 frequency in
Europe was observed on the Faroe Islands (33.4%). In
contrast, frequencies were substantially lower in most
Southern European countries, such as Turkey (13.2%), Italy
(16.4%), and Greece (17.7%). Notably, Finns contradict this
trend with a population frequency of 10%, which is sub-
stantially lower than in neighboring Sweden (19.2%),
Norway (22%), and Estonia (16.7%).

Similar trends were observed for the CYP2D6 deletion
variant CYP2D6*5, which was most frequent in Norway
(6%), Denmark (5.9%), and Sweden (4.1%), whereas pre-
valence in Central Europe pivoted around 3% and lowest
CYP2D6*5 frequencies were observed in Southern Eur-
opean countries, such as Croatia (1%), Sardinia (1.3%),
North Macedonia (1.5%), and Turkey (1.8%). Again,
population frequency of CYP2D6*5 in Finland (2.2%)
contrasted surrounding Scandinavian countries and was
more similar to prevalence rates in Central Europe.

Fig. 3 European map of CYP2D6 allele duplications (CYP2D6*1 XN
and CYP2D6%*2xN). The lowest frequencies were found in Northern
European countries, such as Estonia (0.3%) and Sweden (0, 5%,
green), whereas highest frequencies were described in South-Eastern
Europe (Greece; 6% and Turkey; 5.6%, red)

In contrast to CYP2D6%*4 and CYP2D6*5, no clear gra-
dients were detected for CYP2D6%*3, whose frequencies
pivoted around 0-2% throughout Europe. Notable excep-
tions are the relatively high, geographically disperse fre-
quencies in Cyprus (4%), Finland (3.5%), and the UK
(3.3%; Supplementary Fig. 1).

Discussion

Interethnic differences in drug pharmacokinetics or dynamics
constitute important factors to consider for increasingly mul-
tinational drug development programs and genetic variability
in drug-metabolizing enzymes constitutes an important factor
underlying these differences. As a result, the labels of multiple
marketed drugs, including rosuvastatin, carbamazepine, and
tacrolimus, contain recommendations to adjust starting doses
based on ethnicity [18]. CYP2CI9 and CYP2D6 harbor
multiple genetic polymorphisms, which differ substantially
between ethnic groups and geographic regions and can entail
clinically important differences in drug response. To date,
numerous studies have analyzed the frequencies of these
polymorphisms; yet, the available allele frequency data have,
to our knowledge, not yet been systematically consolidated
into high-resolution maps of CYP2CI9 and CYP2D6 varia-
bility within Europe. We therefore compiled data from 79
original publications resulting in aggregated genotypes for the
most relevant CYP2C19 and CYP2D6 alleles from 82,791
healthy individuals. Notably, while most studies provided
data from unrelated individuals, we cannot exclude related-
ness across studies. However, we do not expect this fraction
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Fig. 4 European maps of the CYP2D6 loss-of-function alleles
CYP2D6%*4 and CYP2D6*5. a CYP2D6%*4 frequencies differed
between 10% in Finland (green) and 33.4% on the Faroe Islands (red).
Frequency in Romania (indicated by asterisk) refers exclusively to the
Romani population. b CYP2D6*5 was most common in Norway (6%,
red) and Denmark (5.9%), whereas it was most rare in Croatia (1%)

to significantly impact the accuraccy of
frequencies.

Frequency of functional CYP2D6 gene duplications was
highest in Greece and Turkey and lowest in Scandinavian
countries, which is in accordance with decreasing fre-
quencies of ultrarapid metabolizers in a direction from
Southern to Northern European populations [19]. Globally,
CYP2D6 duplication is most common in North-East Africa
and the Middle East with frequencies of 7-16% [20-22]. It
has been speculated that the evolutionary basis for this
gradient is the role of CYP2D6 in the detoxification of plant
alkaloids, which allowed carriers of duplicated alleles to tap
food sources during times of starvation that would have

the reported
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been toxic for normal CYP2D6 metabolizers [23]. Inver-
sely, frequencies of the loss-of-function alleles CYP2D6%4
and CYP2D6*5 were highest in Scandinavia and lowest on
the Mediterranean with further decreasing frequencies in
Ethiopia and the Arabian peninsula [20-22]. These data
thus corroborate the hypothesis that CYP2D6 metabolic
capacity might have been under selective pressure specifi-
cally in North-East Africa and subsequent migration events
resulted in the high frequencies of ultrarapid CYP2D6
metabolizers in Southern Europe.

We observed that CYP2C19*2 was graded from North-
West to South-East Europe. Interestingly, we observed a
high frequency of CYP2C19%2 in Romani (20.8%) that was
significantly different from the hosting Hungarian popula-
tion (13.3%; p <0.01; [24]). The Roma minority originates
from North-West India, and due to a series of population
bottlenecks with multiple founder events and low number of
interethnic marriages constitutes a relatively homogeneous
ethnic group [25]. As a consequence of this complex
population history, CYP2C19%*2 frequencies in Roma were
similar to those reported in North Indian populations [26].
Thus, pharmacogenetic variability in Roma is distinctly
different from European populations and affiliation to a
Roma group might be a factor of consideration for treatment
decisions of CYP2C19 substrates.

The distribution of CYP2C19*17 was highest in Central
Europe and lower in Southern European countries. Our find-
ings are in drastic contrast to a meta-analysis performed by
Fricke-Galindo et al. who reported that CYP2C19*17 is pre-
dominantly found in Mediterranean countries with frequencies
of 42% [11]. However, we find that frequencies are sub-
stantially lower throughout Southern Europe, pivoting around
20-25%. Careful revisiting of the original data revealed that
instead of the frequency (14.9%), Fricke-Galindo et al. erro-
neously used the number of individuals (n =42) for the
Spanish population [27] as population frequency. Our findings
of moderate CYP2C19*17 frequencies in Southern Europe
align with data from Northern African and Middle Eastern
populations in which CYP2C19*17 allele frequencies between
17.9% and 26.9% have been reported for Ethiopians, Saudi
Arabians, Kurds, and Turks [9, 28-30]. Furthermore, low
frequencies (15.9%) have been found in Sephardic Jews [31]
who originated from Jews on the Iberian peninsula in the 15th
century, which are in close agreement with the aggregated
prevalence we found in contemporary Spanish individuals
(17.1%). The distribution of CYP2C19 alleles thus reflects the
migratory history of European populations.

These findings have potentially important implications,
as CYP2C19 genotype is included as a pharmacogenomic
biomarker in the drug labels of 22 medications. Further-
more, guidelines issued by pharmacogenetics expert
workgroups (CPIC and DPWG) provide recommenda-
tions to optimize genotype-guided prescription for 14
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drugs [32]. For instance, CYP2CI19 genotype affects
treatment efficacy and risk of adverse events when treated
with the antidepressant escitalopram [33], and for ultra-
rapid CYP2C19 metabolizers it is recommended to select
an alternative drug not predominantly metabolized by
CYP2C19. As the cost effectiveness of pharmacogenetic
implementation is dependent on carrier frequencies, fal-
sely high population frequencies might erroneously
incentivize pre-emptive CYP2C19 genotyping.

Notably, while genotype data for CYP2C19 and CYP2D6
were available for more than 80,000 individuals from 31
European countries, cohort coverage was geographically
highly unequal (Table 1). For eight countries less than 100
individuals were genotyped and, as a result, population fre-
quencies in these countries could only be estimated with wide
confidence intervals. Thus, these analyzes incentivize the
country-specific expansion of genotype data to further refine
estimates of intra-European CYP allele frequencies. Further-
more, while CYP genotype-derived activity scores constitute
important proxies for the prediction of metabolic capacity, they
can only explain a fraction of the observed functional varia-
bility [34]. One underlying reason could be rare variants
beyond the tested polymorphisms that contribute to gene
function. In this regard CYP2CI9 and CYP2D6 have indeed
been found to harbor a plethora of rare genetic single
nucleotide variants (SNVs) with putative functional impor-
tance [35-37]. Furthermore, rare population-specific CNVs
can contribute to functional variability. For instance, CYP2C19
has recently been found to be deleted specifically in Finns with
frequencies of 0.8% [38]. However, information regarding the
prevalence of these rare SNVs and CNVs is currently not
available with high geographic resolution and the generation of
such sequencing-based pharmacogenomic data sets constitutes
an interesting avenue for future research that will help to refine
genotype-guided drug response predictions [39, 40].

In conclusion, we provide refined maps of clinically
important CYP2C19 and CYP2D6 genetic variability across
European populations. Our findings support the need for
refined pharmacogenomic mapping to guide precision
public health.
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