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Abstract: Recent research has helped clarify the role of cadmium (Cd) in various pathological states.
We have demonstrated Cd involvement in pancreatic cancer, as well as the bioaccumulation of Cd in
the pancreas. Bioaccumulation and increased toxicity suggest that Cd may also be involved in other
pancreas-mediated diseases, like diabetes. Cd falls into the category of “hyperglycemic” metals, i.e.,
metals that increase blood glucose levels, which could be due to increased gluconeogenesis, damage
to β-cells leading to reduced insulin production, or insulin resistance at target tissue resulting in
a lack of glucose uptake. This review addresses the current evidence for the role of Cd, leading to
insulin resistance from human, animal, and in vitro studies. Available data have shown that Cd may
affect normal insulin function through multiple pathways. There is evidence that Cd exposure results
in the perturbation of the enzymes and modulatory proteins involved in insulin signal transduction
at the target tissue and mutations of the insulin receptor. Cd, through well-described mechanisms of
oxidative stress, inflammation, and mitochondrial damage, may also alter insulin production in β-cells.
More work is necessary to elucidate the mechanisms associated with Cd-mediated insulin resistance.

Keywords: cadmium; insulin; diabetes; hyperglycemia; hyperinsulinemia; lipogenic; β-cell toxicity

1. Introduction

Insulin-mediated glucose disposal widely varies in its sensitivity across populations [1],
and depending on the level of compensatory hyperinsulinemia, resistance to insulin can or cannot
be overcome. This insensitivity can lead to glucose intolerance, high-plasma triglyceride levels,
low high-density lipoprotein cholesterol (HDL-C) concentrations, and hypertension [2]. If not
overcome, it will lead to type 2 diabetes (T2D) development. Simultaneously, this collection of
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abnormalities has been linked with a significantly increased risk of cardiovascular diseases (CVD) [2].
The proposed association was formally established in the report of the adult treatment panel III of the
National Cholesterol Educational Program. Formerly known as syndrome X, insulin resistance (IR)
syndrome represents the insensitivity of the peripheral tissues (e.g., muscle, liver, adipose tissue) to the
effects of insulin. IR is defined as a state wherein normal insulin concentrations evoke a less-than-normal
biological response [3]. Although not a disease per se, it may be understood as a condition that increases
the likelihood of developing a cluster of abnormalities, such as glucose intolerance, dyslipidemia,
endothelial dysfunction, hemodynamic changes, increased testosterone secretion, and sleep-disordered
breathing [4]. Additionally, it does not necessarily lead to, but instead increases the risk of clinical
syndromes like CVD, essential hypertension, polycystic ovary syndrome, nonalcoholic fatty liver
disease, and certain forms of cancers [2]. Metabolic syndrome (MS) is a collection of cardiometabolic
risk factors. It is often characterized by IR that may provide a link between physical inactivity and
MS development [5]. Most importantly, IR and impaired insulin secretion play a crucial role in the
pathogenesis of T2D [6]. Although the potential causative connection has been shown for certain
pollutants and IR development, the role of environmental chemicals in IR pathogenesis and the
molecular mechanisms contributing to its development have not been fully elucidated yet [7].

Over fifty years ago, there was evidence suggesting that certain inorganic elements may alter
glucose utilization in target tissues via sulfhydryl modification [8]. Since the 1970s, there has
been a growing body of evidence that supports the involvement of these elements in various
metabolic disorders associated with impaired β-cell function [9–12]. Several inorganic elements
may influence the proper regulation of insulin/glucose homeostasis. They can be divided into two
categories—hyperglycemic and hypoglycemic—based on their effects on insulin production or insulin
action at target tissues [13]. The categorization of different elements is displayed in Table 1.

Table 1. Categorization of different elements as hyper- or hypoglycemic [13].

Hyperglycemic Hypoglycemic

Arsenic Zinc
Mercury Vanadium
Iron Chromium
Lead Magnesium
Nickel
Cadmium

Our interest is focused on the actions of cadmium (Cd) and its ability to alter numerous cell and
organ systems. This toxic metal is characterized by a high soil-to-plant transfer rate, which makes the
dietary exposure to this metal inevitable and a matter of great public health concern [14,15]. Another
important source of exposure of the general population to Cd is smoking, as shown by elevated
Cd levels in the smokers’ blood [16]. Once inside the organism, Cd has a long biological half-life,
with estimates reaching 45 years for humans [17]. Whole-blood and urinary Cd concentrations are
widely accepted markers of Cd exposure and accumulation [14,18]. Long-term exposure to Cd has been
associated with various conditions, including various renal syndromes, osteoporosis and osteomalacia,
CVD, and different types of cancer [14,15,19–25]. Its endocrine-disrupting properties have also been
shown, suggesting its possible effects on estrogenic activity [26–29], alterations in semen and the
testis [30–32], and a role in thyroid disorders [33–35]. The mode of toxic Cd actions in the organism have
been extensively investigated, but still not entirely elucidated, mainly because they may change with
the dose and the detailed health status of the exposed subjects. Recent reviews by Ðukić-Ćosić et al. [36]
and Wallace et al. [37] have summarized the most critical mechanisms of Cd toxicity: changes in gene
expression and DNA repair, interference with autophagy and apoptosis pathways, oxidative stress
induction, interaction with bioelements, and epigenetic modifications. These mechanisms underlie the
possible role of Cd as a metabolic disruptor. Its direct pancreatotoxic actions are buttressed by the Cd’s
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ability to accumulate in the pancreas, as shown in many human studies [22,38–40]. Similar results have
been obtained in animal studies as well [41,42], with a dose-dependent accumulation pattern observed
in rats [22]. In vitro studies have shown not only dose- but also a time-dependent accumulation of
Cd in insulin-producing β-cells [43]. Furthermore, having in mind Cd’s deleterious effects on the
kidneys [14] and the role of kidneys in glucose homeostasis, which is accomplished through the
processes of gluconeogenesis, glucose filtration, glucose reabsorption, and glucose consumption [44],
it could be presumed that Cd’s effects in the kidneys do contribute to IR development to a certain
point. One of the first reports of Cd’s ability to promote the development of diabetes appeared nearly
four decades ago, when Merali and Singhal reported that neonatal exposure to Cd resulted in IR and
diabetes development in rats [45]. The present review aims to provide an overview of the potential role
of Cd exposure in IR collected in human, animal, and cell studies, focusing mainly on those conducted
in the last two decades. Furthermore, the review will also briefly discuss the existence of a threshold
for this effect.

2. Insulin Resistance and Cadmium: Human Studies

Human studies investigating the link between Cd exposure and IR are limited and have yielded
somewhat conflicting data. The first association between Cd content, impaired fasting glucose (IFG),
and diabetes was suggested by Schwartz et al. [46], who analyzed the data of the third National
Health and Nutrition Examination Survey (NHANES III). This large, cross-sectional study revealed
a significant, dose-dependent association between Cd urinary levels and IFG/diabetes prevalence,
regardless of the source of Cd exposure. Another study analyzing NHANES participants for the years
2005 through 2010 aged ≥40 years revealed a complex, non-linear association between higher Cd
levels and prediabetes state. Since this association varied across smoking groups and age, the authors
suggested a complex relationship between Cd exposure, age, smoking habits, and prediabetes odds.
Nevertheless, since no differences in the Homeostatic Model Assessment for IR (HOMA-IR) were
observed across the exposure quintiles, the authors marked changes in IR as an unlikely cause of Cd
effects on glucose levels [47]. The relationship between Cd exposure and T2D occurrence was confirmed
in the study comparing the levels of Cd in various biological samples (blood, urine, and scalp hair) of
patients having T2D (age range 31–60) with the levels in control subjects. Significantly higher levels of
Cd were observed in scalp hair samples from patients compared to control individuals, along with
a similar trend in observed values obtained from blood and urine samples [48]. Studies that followed
tried to establish possible mechanisms of Cd in disturbing glucose metabolism. Pizzino et al. [49]
investigated glycemic control, oxidative stress markers, and urinary Cd levels from 111 males (aged
12–14 years) living in polluted areas of Sicily and control age-matched population of 60 males living
28–45 km from the contaminated site. The results revealed altered glycemic control in adolescents
that was associated with higher Cd levels. Altered glycemic control was demonstrated by the robust
correlation between Cd and the homeostatic model assessment of HOMA-IR, along with markers
of disturbed oxidative status. The authors identified oxidative stress disturbance to play a role in
Cd-induced IR [49]. Apart from oxidative stress induction, Cd’s ability to induce inflammation
was also investigated. In a case-control, cross-sectional study, including 120 healthy controls and
105 systemic lupus erythematosus (SLE) patients, the relationship between various trace elements with
SLE diagnosis, disease activity, and IR was assessed [50]. Serum levels of Cd were higher in patients
with IR. Cd’s ability to impair insulin sensitivity was connected to the positive association between Cd
and the C-reactive protein (CRP). Namely, CRP as an inflammatory marker was shown to have a role
in the development of diabetes [51].

Conflicting results from multiple studies have complicated the interpretation of Cd-mediated
hyperglycemia. Jacquet et al. provided a comprehensive review of these conflicting reports in a 2016
review, where they categorized the effects as having “associations”, “no association”, or “potentiation” in
diabetes [52]. Examples of this data variability is reflected in a study of Scandinavian Caucasian women,
aged 64, which showed conflicting data with the previously mentioned studies [53]. Two thousand five
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hundred and ninety-five women were screened with oral glucose tolerance tests to identify subjects
with T2D, impaired glucose tolerance (IGT), and normal glucose tolerance (NGT), and samples were
randomly chosen from each group. Cd concentration was measured in blood and urine samples, while
the HOMA-IR calculations assessed the acute insulin response. A follow-up examination was also
performed. Both cross-sectional and prospective studies showed no association between Cd exposure
and increased risk of T2D, impaired insulin secretion, or insulin sensitivity [53]. The discrepancies in
these results with previously published data were explained by differences in the occurrence of T2D
risk factors in investigated groups, such as age, obesity, smoking, lifestyle, and ethnic predispositions.
Furthermore, all women studied were aged 64+, which does not inform on the behavior of other
populations. Interestingly, however, Wu et al. [54], in their PRISMA-compliant systematic review and
meta-analysis based on 11 cohort/cross-sectional studies included in the meta-analysis, determined that
high Cd exposure may not be a risk factor for diabetes development. Moreover, Anetor et al. [55] found
significantly lower Cd blood levels from diabetic patients when compared to controls. This conflicted
finding was partly attributed to the observed higher Zn levels in the same group of patients and the
relatively small sample size (65 participants). Indeed, Cd belongs to the same group of elements
as zinc, and the number of common biological targets of the two metals abound [56–60]. The role
of zinc in insulin regulation has been extensively examined [61–63]. Zinc associates with insulin in
exocytosis granules, and a significant amount of zinc is subsequently released into the extracellular
space. Zinc can act as an autocrine mediator, affecting the activity of surrounding β-cells [61]. Defects
in the transporters, such as SLC30A (ZNT) for the Zn provision for insulin secretion or SLC39A
(ZIP) for replenishment, result in reduced intracellular zinc and a reduction in functional insulin
release [62]. Changes in functional insulin release and alterations in zinc homeostasis may thus combine
to contribute to glucose intolerance and IR [63].

Swaddiwudhipong and associates conducted a series of studies in Cd-exposed adults from Mae
Sot District, Tak Province, in northwestern Thailand. This region was contaminated by the Cd-rich
waste of Zn mines, and the population was Cd-exposed by the consumption of rice and other crops
irrigated by downstream water. No association between urinary Cd levels and an increase in diabetes
prevalence and risk were found [64,65]. The follow-up examination conducted on 436 persons who
had urinary Cd levels >5 µg/g creatinine revealed a significant increase in the prevalence of diabetes
compared to baseline [66].

The question of the role of kidneys in Cd-induced IR has been raised earlier. The kidney is
responsible for up to 20% of all glucose production, and these figures are even higher in diabetic
conditions [44]. Moreover, IR represents an early metabolic alteration in chronic kidney disease (CKD)
patients, with the skeletal muscle representing the primary site of IR [67]. On the other hand, a recent
study in a group of 395 subjects from low- and high-Cd exposure areas demonstrated that glomerular
filtration rate could be linked to Cd exposure and tubular toxicity [68]. This linkage was shown to
act in both dose and toxicity severity-dependent manners. The association of Cd with CKD was
recently highlighted in a review by Satarug [14], which addressed the connection between Cd dietary
intake and its effects on kidneys. However, animal studies have shown that the Cd effect on fasting
blood glucose elevation is evident before signs of renal dysfunction are overt [69]. It is, nevertheless,
highly plausible that Cd acts synergistically with chronic hyperglycemia seen in diabetic nephropathy.
For example, research on 65 participants, consisting of 45 T2D and 20 healthy individuals, revealed
the association between higher Cd levels in the poor glycemic control group [55]. Thus, Cd should
certainly be considered as the agent of high importance in the progression of diabetes-related kidney
disease, and the toxic effects of Cd in the kidney certainly further contributes to the role of Cd in IR.

Studies conducted in human subjects have shown conflicting data on the role of Cd in IR
development. The obtained results depend on many factors, and the actual prevalence of diabetes in
the study population seems to have an important impact on them. Although questionable due to ethical
reasons, prospective studies investigating the Cd levels, especially low-level exposure, before the
presentation of pathologies/toxicity is warranted to establish the causality bases for this association.
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3. Insulin Resistance and Cadmium: Animal Studies

For the last five decades, studies in animals have suggested that both acute and chronic Cd
exposure can affect glucose metabolism and synthesis regulation, and alter insulin secretion [70,71].
Intraperitoneal administration of a single dose of Cd-acetate to mice (2.0–6.0 mg/kg body weight
(b.w.) and rats (0.84 mg/kg b.w.) was shown to cause a significant increase of blood glucose [70,72].
In addition, feeding animals chow containing increasing amounts of Cd (0–200 ppm CdCl2) for 30
days resulted in a significant dose-dependent elevation of blood glucose levels [73]. The ability of
the pancreas to accumulate Cd has been demonstrated in multiple animal studies. Chronic oral
administration of Cd for 60 days (100 mg/L) in rats resulted in the accumulation of the metal in
the pancreas and a significant decrease in serum insulin levels, followed by a reduction in insulin
gene expression [74]. Similar results were obtained after a single oral exposure to a high dose of Cd
in rats, where the pancreas accumulated this toxic metal [22]. Studies directed at investigating the
impact of environmentally relevant doses of Cd showed that Cd exhibited gender-specificity in glucose
metabolism disruption, with females being more sensitive [75]. The same authors demonstrated that
low-level maternal exposure to Cd influences glucose homeostasis in offspring and increases the risk
of offspring developing T2D later in life [76].

Although different animal experiments indicate impaired glucose metabolism, insulin secretion,
and tissue resistance to insulin, the exact mechanisms of these effects of Cd are still hardly known.
Under physiological conditions, the maintenance of glucose homeostasis depends on a coordinated
process of balancing circulating glucose levels and the release of insulin by the pancreatic β-cells. In the
post-absorptive state, 75% of glucose uptake occurs in the insulin-independent tissues, mainly in the
liver and brain tissue. In comparison, the remaining glucose uptake (25%) occurs in insulin-dependent
tissues, as well as muscle and adipose tissue [77]. To some extent, β-cells can compensate hyperglycemic
states by elevating the secretion of insulin at the expense of the likelihood of IR development in multiple
peripheral tissues [78].

Based on the studies in animal models of Cd exposure, Cd can produce a direct effect on the
pancreas and affect glucose transport in insulin-independent and insulin-dependent tissues. Numerous
animal studies have demonstrated that Cd exposure influences glucose metabolism by directly affecting
pancreas morphology andβ-cell function, resulting in cellular damage. Furthermore, oxidative damage,
as a known phenomenon important in diabetes development, may occur upon Cd accumulation [52].

A hyperglycemic state in animals involves the increased activity of the glycogenolysis pathway
and stimulation of enzymes associated with the gluconeogenesis pathway [73]. Apart from the Cd
effects on gluconeogenesis, Cd can influence insulin via different patterns. Lei et al. [74] demonstrated
that subcutaneously administered cadmium (0.5, 1.0, and 2.0 mg/kg b.w.) decreased insulin gene
expression in exposed rats. This investigation suggests that Cd can influence the biosynthesis of
insulin but has no effects on its release. Additionally, the same study revealed pancreatic dysfunction
occurring earlier than kidney dysfunction following Cd administration.

Apart from the direct Cd effect on pancreaticβ-cells, exposure to this metal affects glucose transport
in other tissues, all potential sites of Cd toxicity. In these tissues, insulin exhibits different effects:
in skeletal muscle, it promotes glucose utilization and storage by increasing glucose transport and net
glycogen synthesis; in the liver, it activates glycogen synthesis, increases lipogenic gene expression,
and decreases gluconeogenic gene expression, whereas, in white adipocyte tissue (WAT), it suppresses
lipolysis and increases glucose transport and lipogenesis [79,80]. Glucose uptake in different animal cell
types is mediated by a family of intrinsic membrane proteins (products of the GLUT/SCL2A genes) that
facilitate glucose transport through membranes. GLUT4, the insulin-responsive glucose transporter,
is selectively produced in muscle and adipose cells, while GLUT2 occurs in hepatic cells [81,82].

Generally, in skeletal muscle, Cd-induced IR suppresses glucose utilization and storage by
decreasing glucose transport and net glycogen synthesis [79,80]. One-month administration of CdCl2
(50 mg/L) with drinking water in male rats resulted in a significant decrease in plasma insulin-like growth
factor 1 (IGF-I) and insulin-like growth factor binding protein-3 (IGFBP-3) levels [83], factors known to
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be altered in IR. Insulin resistance in the muscle of rats chronically exposed to Cd has been associated
with the reduction of glycogen synthesis. Studies with rodents exposed to Cd have shown decreased
GLUT4 expression, which could partly explain the reduction in glycogen synthesis [79].

In the liver, insulin activates glycogen synthesis, increases lipogenic gene expression, and decreases
gluconeogenic gene expression. Cadmium-induced IR in the liver leads to a significant increase in
hepatic GLUT2, carbohydrate regulatory element-binding protein, glucokinase, and pyruvate kinase
mRNA [84]. Zhang et al. [85] have demonstrated that animals exposed to Cd developed IR as the
result of the activation of lipogenic proteins, leading to a significant increase in serum glucose and free
fatty acids.

Finally, in adipose tissue, especially white adipocytes, insulin suppresses lipolysis and increases
glucose transport and lipogenesis [80]. Thus, the adipose IR is the inability of insulin to activate
adipose glucose transport, promote lipid uptake, and suppress lipolysis [86]. Several mechanisms were
suggested to contribute to the adverse Cd effects on adipose tissue pathophysiology and subsequently
increased IR. Han et al. [79] demonstrated that subacute administration of Cd (subcutaneously. 2 mg/kg
daily for four days) produces impaired glucose tolerance (IGT) in rats, which was associated with a
dose-dependent reduction in GLUT4 protein and GLUT4 mRNA levels in adipocytes. Furthermore,
the IR state in adipose tissue favors lipolytic pathways, resulting in an elevation of free fatty acids
(FFA), which additionally contributes to impaired insulin secretion when released in the plasma.

4. Insulin Resistance and Cadmium: Cellular Studies

4.1. Non-Pancreatic Cells

Many in vitro studies have used non-pancreatic cell lines, such as adipocytes or ovarian/granulosa
cells, that are typically involved with insulin action or glucose utilization [87]. In adipocytes directly
obtained from Wistar rats, exposure to 5 µM Cd increased the cellular metabolism of glucose,
similar to zinc, but did not increase glucose uptake, which is the opposite of zinc’s action [88].
The primary glucose transporter stimulated by insulin is GLUT4, and an early study suggests that Cd
exposure decreases the activity of the GLUT1 transporter [89]. Exposure to Cd also reduces critical
cellular mediators involved in the differentiation and normal function of adipocytes. Decreased leptin,
adiponectin, and resistin alter cellular ability to normally process lipids, potentially leading to IR [90,91].
Proteins that interact with the motif cytosine–cytosine–adenosine–adenosine–thymidine (CCAAT)
are referred to as “CCAAT-enhancer-binding proteins” and are a target of Cd action in adipocytes.
There are six CCAAT-enhancer-binding proteins involved in normal adipogenesis, including β and δ,
which are activated in early adipocyte differentiation, and α, which is upregulated in the later stages of
adipogenesis. Early in adipogenesis, β and δ stimulate peroxisome proliferator–activator receptor-γ
(PPARγ). Exposure to Cd has been shown to inhibit the production of both CCAAT-binding enhancer
proteins and PPARγ, leading to IR and an increase in adipogenesis [91,92]. In adipocytes, exposure to
Cd alters the cellular functions involved with lipid metabolism and IR development, leading to obesity
or diabetes.

4.2. Pancreatic Cells

Of the various elements, arsenic is possibly the most studied with regard to its effects on pancreatic
function and the subsequent development of diabetes. Directly comparing arsenic, manganese,
and Cd actions, the reduction in glucose-stimulated insulin section after arsenic and manganese
exposure appeared to be due to mitochondrial dysfunction. In contrast, the inhibitory effects observed
following Cd exposure were due to a mitochondria-independent mechanism [9]. There is evidence
that mitochondria can transport Cd via the calcium uniporter, resulting in interference of the K+/H+

exchanger [93]. Nearly forty years ago, a transport-specific deficiency was identified due to changes
in Cd sensitivity encoded by the SLC39A8 gene [94]. The transporter encoded by this gene is highly
conserved across species and has been shown to encode a specific element cation transporter referred to
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as ZIP8. Examination of β-cell function after arsenic, manganese, and Cd exposure revealed a distinct
pattern of miRNA expression changes unique to each element, suggesting that biochemical differences
result in distinct responses. Exposure to inorganic arsenic gave rise to a significant 76% increase
in miR-146a, while there was a 60% decrease in miR-195 expression following Cd exposure [95].
Since β-cells are excitable cells and involve cell depolarization, leading to insulin release, several
studies have examined the effects of metal exposure on voltage-gated calcium channel function.
In an early study, ex vivo, isolated, perfused rat pancreas demonstrated that the addition of Cd
to the perfusion buffer reduced insulin release, possibly due to the blockade of calcium uptake,
thus preventing β-cell depolarization [96]. Characterization of the calcium channels suggests that
the L-type (long-lasting) calcium channel is the predominant channel on β-cells, and that Cd acts by
preventing calcium uptake via L-type channels [97]. Voltage-dependent calcium uptake is dependent
on β-cell depolarization via potassium channel activity. Cd-mediated effects on potassium channels
appear negligible and are mediated by voltage-dependent calcium channel inhibition [98]. In addition
to blocking calcium uptake, Cd itself can be transported into β-cells and accumulate within the cells.
Interestingly, at relatively low concentrations (5 µM), in the absence of calcium applied for one hour,
the non-stimulated insulin release from islets of obese–hyperglycemic mice increased, but not the
glucose-stimulated one [99]. Changes in insulin release in the presence of 5 µM Cd appears to be
independent of calcium involvement. Lower concentrations of Cd do not increase intracellular calcium,
nor inositol 1,4,5-triphosphate (IP3) [100]. When 1 h-applied Cd concentrations exceed approximately
160 µM, insulin release is inhibited [99]. One conclusion from earlier studies is that Cd acts like a “silent
killer”, being taken up into β-cells and accumulating with time. During the early stages, β-cells
would function normally until the Cd detoxification systems are overcome. Cd content from normal,
“non-diabetic” human β-cells is approximately 29 nmol/g protein, with significant variability between
individuals; that is not high enough to impair normal pancreatic function, as indicated by the lack of
diabetic symptomology [43]. Determining intracellular Cd concentration and correlating intracellular
values to extracellular concentrations have been challenging. Mathematical modeling data obtained
from intestinal cell lines suggests that an external concentration of 10 µM would lead to an intracellular
Cd concentration of 5000 amol/cell [101]. Cd continuously accumulates over time, at concentrations
that may not significantly alter cell viability or gene expression [43]. Changes in β-cell function at
sub-lethal concentrations seem to involve mitochondrial adaptation. As Cd accumulates in β-cells to
several hundred-fold over baseline concentrations, mitochondria begin to appear fragmented, with the
fusion–fission state shifting towards fission [102]. Studies using the INS-1 human pancreatic β-cell line
utilized Cd concentrations 10-fold below the threshold necessary for cell death. Concentrations of
Cd that are subtoxic produced no effects on mitochondrial function that were assessed by the energy
change and the synthesis of adenosine triphosphate (ATP). Yet there were no morphological changes,
suggesting a mitochondrial adaptive response to low-level Cd. The authors concluded that if cellular
Cd influx continues, impairment of this organelle may contribute to cellular dysfunction and decreased
viability of β-cells [102].

Mitochondrial respiration (oxygen consumption) and energy state (adenosine triphosphate
production) appear unchanged during this process, until the cells commit to the death pathways [93].
Disruptions of mitochondrial morphology and energy state are linked to the onset of apoptosis. The
intracellular mechanisms associated with Cd-mediated apoptosis have not been completely elucidated.
The intracellular apoptotic mechanisms usually co-exist with necrosis, with a proportion of each
depending on the cadmium dose and other conditions [102]. Exposure to Cd has been shown to elevate
oxidative stress in pancreatic cells [103]. Increases in oxidative stress are linked to increased levels of
malondialdehyde, free cytochrome c, p53, extracellular-regulated kinases 1/2, p38-mitogen-activated
kinase, and c-jun N-terminal kinase (JNK), but decreases in mitochondrial membrane potential and
Bcl-2 have also been observed [104]. Of the changes observed following Cd exposure, the increase
in JNK activity by increased oxidative stress has been postulated to be one trigger for apoptosis.
Not only is the phosphorylation of JNK upregulated after just one hour of exposure to 10 µM Cd,
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the expression of CCAAT-enhancer binding protein homologous protein, CHOP, is significantly
upregulated [105]. Mitogen-activated kinases are vital for the normal function of the cell through
proliferation, differentiation, and apoptosis. CHOP has been linked as an apoptotic response to oxidative
stress in the endoplasmic reticulum. Additionally, Cd-mediated effects have been demonstrated directly
via activation of the extracellular, signal-regulated kinases (ERK1/2) [106,107]. In general, ERKs activate
numerous downstream pathways and are involved in Cd-induced carcinogenesis [108,109]. Together,
reported effects of Cd on β-cells provide different pathways for Cd-mediated responses, ultimately
leading to apoptosis, cell death, and a lack of β-cell responsiveness to elevated glucose, leading to
stimulated insulin release.

5. Insulin Resistance and Cadmium: Is There a Threshold?

Considering Cd-mediated IR, the critical question is as follows: is there is a threshold for this
effect? As recently reviewed [110], uncertainties in the mechanisms of low-level metal toxicity for
humans and the demonstration of the existence of a safe threshold remains a rather challenging issue in
toxicology. The comparable issue of whether endocrine disruption (ED) occurs at a threshold value has
been holding for years, and the scientific community still expresses controversial views. The Endocrine
Disrupters Expert Advisory Group (ED EAG) of the European Commission published a report in
2013 [111] summarizing experts’ opinions regarding the existence of ED thresholds of adversity and
the possibility of estimating such thresholds from existing experimental data. Most experts expressed
the view that a threshold is likely to exist, but it might be exceptionally low. The basis of this argument
is that one molecule, bound to only one receptor, would not be enough to activate the cascade of events
needed to lead to apical adversity. However, in the case of fetal development, a threshold might not
exist, due to the immaturity of the endocrine system [112]. Furthermore, with regard to the possibility
of non-monotonic dose-response curves (NMDRCs), the available assays and methodologies most
probably are not adequate for estimating a threshold with sufficient accuracy and sensitivity [113].
Other experts have expressed the view that a threshold does not exist, as endogenous hormones are
already present in the body, and only one molecule of a xenobiotic might be enough to overwhelm
the homeostatic system [114,115]. Based on these arguments, the EDs’ risk assessment in most cases
in the European Union is based on a hazard-based (no-threshold) approach, although a different,
case-by-case approach for the Registration, Evaluation, Authorisation and Restriction of Chemicals
(REACH) regulation has been proposed [116]. Other countries, such as the United States, Canada,
and Australia, have adopted a risk-based threshold approach to overcome the difficulties discussed
previously [117,118].

The estimation of a threshold under which Cd does not precipitate IR (further than the theoretical
discussion of existence or not of such a threshold) would necessitate the existence of appropriate
validated assays. For the moment, the globally existing recognized and accepted testing approaches
cover modalities related only to the estrogen, androgen, thyroid, and steroidogenesis (EATS) pathways,
as described in the OECD’s Conceptual Framework (CF) for Testing and Assessment of Endocrine
Disrupters [119]. Assays designed explicitly for the IR are not available in clinical practice or the field
of toxicology. However, we know that IR, at least as a syndrome, generates obesity, hypertension,
high glucose, triglycerides, and an increased LDL/HDL ratio in the blood. These endpoints should be
determined using validated assays, like the repeated dose 90-day study (OECD Test Guidelines (TG)
408) and chronic toxicity and carcinogenicity studies (OECD TGs 451, 452, and 453).

In a regulatory context, for setting an experimental threshold for Cd causing IR, the “no observed
adverse effect level” (NOAEL) or, better, a benchmark dose (BMD) should be determined. To set a BMD,
it should be defined (a) if adversity is considered only as the apical effect(s) or even earlier signs of effect,
and (b) the exact values for the various endpoints and conditions that compose the IR as a syndrome.
In relation to the apical adversity, as mentioned above, a practical approach could be to consider as such
the combination of obesity, hypertension, high glucose, triglycerides, and increased LDL/HDL ratio
in blood, as in clinical practice. In vivo experiments would be necessary, and consequently specific
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values that consider adverse effects should be set for animal studies (considering that an appropriate
model exists). The available studies with rats and mice mentioned in the review of Tinkov et al. [84]
have various shortcomings (such as very low duration, single dose used, use of engineered animals,
and lack of adequate endpoints) to support the establishment of a NOAEL.

Additionally, the Cd mode of action or the related adverse outcome pathway should be elucidated,
and adequate in vitro mechanistic assays should be developed and performed to prove causality.
The exact cause(s) of IR is not yet known. Still, there are data supporting perturbations of the enzymes
and modulatory proteins involved in insulin signal transduction. Oxidative stress, inflammation,
insulin receptor mutations, endoplasmic reticulum stress, and mitochondrial dysfunction affecting the
insulin-dependent cells of skeletal muscle and adipocytes have been put forward [120,121]. The study
of which of the above mechanisms are the most sensitive to Cd and the possible existence of NMDRC
through appropriate methodology are essential steps for substantiating the role of Cd in IR, and
eventually proposing a scientifically robust and reliable threshold if any can be validated.

6. Conclusions and Remarks for Future

Even though evidence abounds suggesting the damaging role of Cd on glucose homeostasis,
the debate continues over the importance of Cd toxicity in the increasing occurrence of diabetes.
Conversations are ongoing about the preventive or curative measures that should be taken within the
susceptible populations. Cd’s biological harm has been documented at different levels, from cells to
human populations. However, the ample literature on cadmium toxicity (more than 15,000 articles are
referenced in PubMed) covers such a variety of experimental conditions and formats that it is difficult
to draw convincing strong conclusions from the available data.

The main topic of the present review, namely IR, is no exception. Cd doses, origins of cells, and
detailed information on the exposed populations are a few of the numerous variables that change and
impair comparison between studies from different groups. At the time of writing this, we are still
unable to propose a range of possible toxicity mechanisms, without knowing whether any level of
exposure to environmental Cd can be accepted for human populations. Figure 1 briefly summarizes
the role of Cd in impaired glucose metabolism in various organs.

Forthcoming studies should thus focus on the application of environmentally realistic doses in
experimental studies since chronic low-level exposure of humans to Cd is seemingly inescapable.
For its contribution to IR, parallel data would have to be obtained with optimized cellular models
for each insulin target tissue. Meanwhile, cells and tissues involved in insulin turnover, secretion,
and withdrawal would have to be similarly studied. The data at hand should now be enough to reach an
international consensus on which concentration, (bio)chemical form, and duration of exposure should
be implemented. In this process, negative results, i.e., a lack of observed effects as long as state-of-the-art
methods are used, are as useful as positive ones. Since prospective population studies are precluded
for obvious ethical reasons, and in the face of the skyrocketing diabetes development worldwide, it
may be hoped that the above reductionist approach can define the most sensitive and useful markers
of minute exposure for humans. This way, reliable monitoring of Cd-associated IR may be reached,
and the degree of usefulness of preventive or corrective measures can be knowledgeably addressed.
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in the kidneys do contribute to IR development to a certain point. In the pancreas, Cd accumulates
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in blood. Besides the direct effect of Cd on the pancreas, this toxic metal affects glucose transport in
insulin-independent (liver) and insulin-dependent tissues (skeletal muscle and adipose tissue).
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and B.A., funding acquisition, A.B. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Education, Science and Technological Development,
Republic of Serbia (No. 451-03-68/2020-14/200161; A.B., D.Ð.-Ć., M.Ć., Z.B., and B.A.). Oklahoma State University
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Gavrović-Jankulović, M.; Manojlović, D. Cadmium as main endocrine disruptor in papillary thyroid
carcinoma and the significance of Cd/Se ratio for thyroid tissue pathophysiology. J. Trace Elem. Med. Biol.
2019, 55, 190–195. [CrossRef] [PubMed]
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