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Abstract: This in silico toxicogenomic study aims to explore the relationship between phthalates and bisphenol A (BPA)

co-exposure and obesity, as well as its comorbid conditions, in order to construct a possible set of genomic biomarkers.

The Comparative Toxicogenomics Database (CTD; http://ctd.mdibl.org) was used as the main data mining tool, along

with GeneMania (https://genemania.org), ToppGene Suite (https://toppgene.cchmc.org) and DisGeNET (http://www.

disgenet.org). Among the phthalates, bis(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) were chosen as

the most frequently curated phthalates in CTD, which also share similar mechanisms of toxicity. DEHP, DBP and

BPA interacted with 84, 90 and 194 obesity-related genes/proteins, involved in 67, 65 and 116 pathways, respectively.

Among these, 53 genes/proteins and 42 pathways were common to all three substances. 31 genes/proteins had

matching interactions for all three investigated substances, while more than half of these genes/proteins (56.49%) were

in co-expression. 7 of the common genes/proteins (6 relevant to humans: CCL2, IL6, LPL, PPARG, SERPINE1, and

TNF) were identified in all the investigated obesity comorbidities, while PPARG and LPL were most closely linked to

obesity. These genes/proteins could serve as a target for further in vitro and in vivo studies of molecular mechanisms

of DEHP, DBP and BPA mixture obesogenic properties. Analysis reported here should be applicable to any mixture

of environmental chemicals and any disease present in CTD.

Introduction

It has been acknowledged that people are not exposed to a
single, but to a great number of chemicals constantly. This
exposure usually occurs at low doses, by various routes,
from a variety of sources (Kortenkamp, 2008). Many
toxicology studies have demonstrated the usefulness of the
dose-addition concept in exploring the combined effects of
chemicals. Joint effects occur even when all mixture
components are present at levels below doses that cause
observable effects (Hayes et al., 2019; Kortenkamp, 2007).
Considering that most mixtures contain multiple
components, quantifying these interactions in terms of risk
assessment is not an easy task. It not only includes mining
published data and characterizing the mixture in the
laboratory, but also in silico hazard analysis and modeling
(Hayes et al., 2019).

Phthalates and bisphenol A (BPA) have been used as
additives in plastic and are present in many consumer
products (Berghuis et al., 2015; Kim and Park, 2014;
Rochester, 2013). These substances are not chemically
bound to plastic, which enables them to migrate or
evaporate into the surrounding environment (Heudorf et al.,
2007; Singh and Li, 2012; Kabir et al., 2015). Human
exposure to phthalates mainly occurs through foods,
because of their uses in wrapping materials and food
processing. Similarly, BPA can migrate from polycarbonate
plastic, such as epoxy resins that line metal cans for food
and beverages (Berghuis et al., 2015; Singh and Li, 2013).
People are additionally exposed to phthalates and BPA via
ingestion of drinking water, inhalation of contaminated air,
as well as dermal absorption (Zarean et al., 2017). Having in
mind that phthalates and BPA coexist in natural
environments, their combined effects have been investigated
in different studies on experimental animals. An acute
toxicity study on mice explored the influence of a single
dose of DEHP injected subcutaneously on deposition of
BPA received as a food supplement. The results of this
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study indicated that DEHP might increase the deposition of
BPA in uterus, ovaries and serum of female and serum and
epididymis of male mice compared to the control (Borman
et al., 2017). Results of a subchronic toxicity study on rats
have demonstrated that, under combined DBP and BPA
treatment, the expression levels of the androgen receptor
(AR), gonadotropin-releasing hormone receptor (GNRHR),
and progesterone hormone receptor (PR) genes were higher
compared to the control group, suggesting an additive or a
synergistic effect (Zhang et al., 2013). Molecular
mechanisms of phthalates and BPA long-lasting effects
continue to be investigated and likely involve disruption of
epigenetic programming of gene expression during
development (Singh and Li, 2012). These chemicals are
known to alter cell signaling and metabolic pathways
involved in lipid homeostasis. This can result in
development of metabolic disorders considered a major
global public health problem nowadays, including obesity
and its comorbidities (Hatch et al., 2010; Muscogiuri et al.,
2017; Stojanoska et al., 2017). Exposure to phthalates and
BPA may lead to adipogenesis, affecting serum levels of
metabolic hormones, steroid hormone receptors and nuclear
receptor signaling pathways in preadipocytes (Muscogiuri et
al., 2017; Zarean et al., 2017). Having in mind that
toxicogenomics merges measuring families of cellular
molecules with bioinformatics and conventional toxicology to
investigate the interactions between genes and environmental
stress in disease causation (Boverhof and Zacharewski, 2006;
Tung et al., 2020; Waters and Fostel, 2004), it can be useful
for predicting gene functions in specific molecular pathways
and finding genomic biomarkers for further in vitro and in
vivo studies (van Breda et al., 2014; Dong et al., 2018).
Additionally, it delivers strategies for mixture assessment,
considering that all possible chemical, gene, protein,
metabolite, and network interactions that may be important
in eliciting mixture-specific toxicities can be studied
(Boverhof and Zacharewski, 2006).

The aim of the current research was to: (i) explore the
relationship between phthalates and BPA mixture and
obesity, as well as its comorbidities, by using the
toxicogenomics data mining approach; (ii) predict the
possible set of genomic biomarkers; and (iii) demonstrate
how in silico data mining could be used as preliminary
investigation for gene prioritization and setting up a
methodology that would be both time and economically
viable for further in vitro and in vivo toxicity testing.

Materials and Methods

Curated interaction analysis
The Comparative Toxicogenomics Database (CTD; http://
CTD.mdibl.org) was selected as the main data mining tool.
Inferences in CTD are mostly based on the information
from animal studies. However, since CTD focuses on
environmental chemicals and outcomes relevant to human
health, genes/proteins of interest are included in the
database only if they are also present in humans (Meng
et al., 2013). Curators insert the chemical-gene interactions
and disease relationships into the CTD following the
manual provided by a lead curator. All the captured data

include: date of curation, ID of the curator, PubMed ID,
interaction, species, chemical, gene/protein, associated
diseases and author contact information (Wiegers et al.,
2009). Prior to public release on the CTD website, all the
curated data are loaded into a database for quality control
review. Additionally, quality control in the CTD is feasible
because each curated interaction is captured using
controlled vocabularies/ontologies with aim to ensure
consistency (Davis et al., 2009; Wiegers et al., 2009). Thus,
CTD uses official gene symbols and names from the
National Center for Biotechnology Information’s (NCBI)
Entrez-Gene database, while CTD disease vocabulary uses
terms from both MeSH (Medical Subject Headings) and
OMIM (Online Mendelian Inheritance of Man) (Davis et al.,
2008; Davis et al., 2019). For our analysis, we used: MyVenn
CTD tool (http://ctdbase.org/tools/myVenn.go), which is used
to explore the relationships among the lists of CTD chemicals,
diseases, genes, GO terms or pathways, or any other data;
VennViewer CTD tool (http://ctdbase.org/tools/vennViewer.go),
which compares associated data sets for up to three chemicals,
diseases, or genes, and Set Analyzer CTD tool (http://ctdbase.
org/tools/analyzer.go), which performs the analyses such as set-
based enrichment for collections of chemicals or genes, and
pathway generation for collections of genes.

All curated interactions of phthalates/BPA genes/
proteins, phthalates/BPA-obesity/comorbidities in CTD are
publicly available, while data are uploaded to the database
monthly (Davis et al., 2009; Davis et al., 2011).

Curation process
The flow chart for the different steps of our analyses is shown
in Fig. 1. Data mining the CTD generated a list of phthalates
and BPA interacting genes/proteins. These genes/proteins
were further analyzed for pathway annotations, gene
ontology and protein/disease relationships. SetAnalyser tool
was used to retrieve the obesity/gene interactions for
phthalates and BPA-induced genes/proteins and molecular
pathways these genes/proteins were involved in. Default
CTD settings were applied (corrected p-value for this
analysis was 0.01). MyVenn and VenViewer tools were used
to find the subset of genes/proteins and enriched pathways
common to all three substances.

Gene-network analysis
Network of genes/proteins related to the obesity development
affected by phthalates and BPA was explored by the
GeneMANIA prediction server (https://genemania.org).
Among the limited gene network databases, GeneMANIA is
one of the most reliable network analyzers. This prediction
server is a flexible, user-friendly web interface used for
generating hypotheses about gene functions, analyzing
gene lists and prioritizing genes for functional assays
(Franz et al., 2018).

Gene Ontology (GO) and molecular pathway analysis
ToppGene Suite’s Topp Fun tool (https://toppgene.cchmc.
org/enrichment.jsp) generated the list of top 10 obesity-
related biological processes, molecular functions and
molecular pathways affected by the investigated substances.
Default settings were used for the analysis (probability
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density function method, 0.05 as p-value cutoff value, FDR
correction). ToppGene Suite is a one-stop portal for gene
list enrichment analysis and candidate gene prioritization
based on functional annotations and protein interactions
network. Its ToppFun tool detects functional enrichment of
the gene list based on Transcriptome, Proteome, Regulome
(TFBS and miRNA), Ontologies (GO, Pathway), Phenotype
(human disease and mouse phenotype), Pharmacome
(Drug-Gene associations), literature co-citation, and other
features (Chen et al., 2009).

Gene—disease analysis
ToppGene Suite’s Topp Fun function was applied to obtain
the list of obesity comorbidities in which genes/proteins
common to all three substances were involved (default
settings). DisGeNET database (http://www.disgenet.org) was

used to find the top gene-disease pairs out for the selected
genes/proteins present in all the obesity comorbidities
obtained from the ToppGene Suite. DisGeNET is one of the
largest available collections of genes involved in human
diseases. DisGeNET integrates data from expert curated
repositories, GWAS catalogues, animal models and the
scientific literature. This platform can be helpful for
investigating molecular underpinnings of specific human
diseases and their comorbidities, analysing the properties of
disease genes, generating hypothesis on drug therapeutic
action and drug adverse effects, validating computationally
predicted disease genes and evaluating text-mining methods
performance (Piñero et al., 2016).

Results

Gene interactions—phthalates and BPA
The first step of our analysis included identifying the genes/
proteins and gene interactions associated with BPA and 14
phthalates present in the CTD (Tab. 1). The information
presented in Tab. 1 was obtained from the Gene tabs on the
CTD website for each of the investigated substances across
all the species included in the CTD database, since all the
genes/proteins are listed in the CTD only if they are also
present in human genome (Meng et al., 2013). The obtained
data indicated that two phthalates, bis(2-ethylhexyl)
phthalate (DEHP) and dibutyl phthalate (DBP), interacted
with 4697 and 5940 genes, exhibiting 7846 and 7140
interactions, respectively. Sum of their 14986 interactions
accounted for 77.74% of all 19277 phthalate interactions,
while sum of the genes/proteins they interacted with was
73.58% of all 14456 genes/proteins phthalates interacted

MyVenn/VennViewer CTD tool:
DEHP + DBP + BPA

Genes common to the investigated 
substances

GeneMANIA: 
Network of mutual genes + 

20 related genes

CTD 
Set Analyser tool

(corrected p-value: 0.01):
Gene interaction types

Potential molecular mechanisms and 
genomic markers of DEHP, DBP and BPA 

mixture obesogenic properties

Toxicogenomic data-mining:
DEHP, DBP, BPA

Obesity

TopGenne ToppFun 
(p-value: 0.05, FDR 

corrected)

- Top 10 obesity 
comorbidities 

- Genes involved in all 
obesity comorbidities

ToppGene ToppFun 
(p-value: 0.05, FDR corrected):

- Biological processes
- Molecular functions
- Molecular pathways

DisGeNET database

- Top 10 gene-disease pairs
- Genes most closely linked 

to obesity

FIGURE 1. Flow chart explaining the steps of our analysis.

TABLE 1

Number of genes/proteins and interactions for phthalates and
bisphenol A (CTD; http://CTD.mdibl.org)

Chemical Number of
genes/proteins

Number of
interactions

Dibutyl phthalate 5940 7140

Diethylhexyl phthalate 4697 7846

Diisobutyl phthalate 1309 1332

Dicyclohexyl phthalate 856 875

Dimethyl phthalate 727 735

Butylbenzyl phthalate 267 506

Diisononyl phthalate 222 296

Diethyl phthalate 184 209

Diisodecyl phthalate 100 116

Di-n-pentyl phthalate 56 83

Di-n-hexyl phthalate 35 51

Diheptyl phthalate 23 24

Phthalic acid 22 43

Di-n-octyl phthalate 18 21

Sum 14456 19277

Bisphenol A 23539 54317
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with according to CTD. Furthermore, according to the CTD
“Comps” data-tab, DBP was found to be the top comparable
phthalate to DEHP, with 1384 common interacting genes/
proteins. Thus, as the most frequently curated and
comparable phthalates, DEHP (CTD_D004051) and DBP
(CTD_D003993) were chosen for toxicogenomic analysis,
together with BPA (CTD_C006780), which, with 23539
genes and 54317 interactions, can be considered one of the
most curated chemical in the CTD. VenViewer CTD tool
revealed that there were 1361 common genes/proteins for
DEHP, DBP and BPA, suggesting a possibility that these
three substances exhibit similar toxicogenomics and adverse
effects on human health. A curated data set for the three
investigated substances was further analyzed to illustrate the
scope of CTD and highlight its potential applications for
toxicity assessment of mixtures.

Genes/proteins connected to the development of obesity
The “Diseases” data-tab on CTD’s webpage lists human
pathologies connected to the investigated chemicals and
provides candidate genes/proteins that may help explaining
the mechanisms underlying the relationships between human
pathologies and chemicals. A further analysis of our gene/
protein sets was aimed at identifying genes/proteins involved
in the development of obesity. According to the CTD, DEHP,
DBP and BPA were found to interact with 89, 91 and 186
obesity related-genes/proteins, respectively. Among these,
54 were common to all three investigated substances. The
exact manner of the interactions between the investigated
substances and the extracted set of 54 mutual genes,
including protein activity, mRNA expression, protein
expression and binding to the proteins, are presented in Tab. 2.

These 54 common genes/proteins were further analyzed
by the CTD, revealing the 31 genes/proteins with matching
interactions for all three substances (Tab. 3). This indicates
that DEHP, DBP and BPA share a number of common
molecular activities and suggests that they might have the
capacity to act together in an additive manner.

Obesity—gene interaction network
CTD SetAnalyser tool provided a list of 97 interactions for the
obtained 31 genes/proteins. In 72 of these interactions Homo
Sapiens was marked as both source and target organism,
suggesting the human relevance of these interactions. A
Pathway View map of these 31 genes/proteins (Fig. 2) was
retrieved using the CTD SetAnalyzer tool to display the
gene-gene interactions derived from the BioGRID (database
dedicated to the annotation and archival of protein, genetic
and chemical interactions) (Chatr-Aryamontri et al., 2017;
Davis et al., 2015). The default map was manually
configured (merged edges and tree view layout). According to
the CTD, all of these interactions were physical, apart from
one (SOD1 with SOD2), which was genetic. To provide a
more detailed view of molecular networks potentially affected
by the investigated substances, GeneMANIA prediction
server was used to analyze the interactions between the
obtained set of genes/proteins. The tight interaction network
between the 31 common genes/proteins was identified,
together with 20 related genes/proteins. The total number of
links between these 51 genes/proteins was 471 (Fig. 3). These

data provide gene to gene (co-expression) and gene to
protein (physical interactions) links, pathways the gene is a
part of and co-localization of the gene with a high accuracy,
revealing that target genes/proteins and their interacting
proteins may have the same or similar functions (Osama et
al., 2019). These results have demonstrated that 59.49% of
our set of genes were in co-expression, meaning that their
expression levels are similar across conditions in a gene
expression study. Furthermore, 20.78% of the interactions
were predicted by the server, 9.48% belonged to the same
pathway, 6.29% were in physical interactions, 3.49% were
with shared protein domains, 3.28% were in co-localization,
while 0.19% were genetic interactions.

Obesity molecular pathways and biological functions
In order to elucidate the biological importance of our set of
genes, enriched pathway and gene ontology (GO) analysis
was performed. TopGenne’s ToppFun function was used to
extract the top 10 biological processes, molecular functions
and molecular pathways involved in the development of
obesity and affected by the investigated substances (p <
0.05) (Tab. 4).

Investigated genes/proteins and obesity comorbidities
Our set of 31 genes/proteins was further analyzed using the
ToppGene’s ToppFun function revealing the top 10
comorbidities of obesity in which these genes/proteins are
involved (Tab. 5). Seven genes/proteins (CCL2, IL6, LPL,
PPARA, PPARG, SERPINE1 and TNF) were found to be
connected with all of the top 10 comorbidities ToppFun had
listed.

After this, DisGeNET database was used to find the top
gene-disease pairs for the selected 7 genes/proteins. A gene-
disease association score provided by this database can be
used for integration and ranking of gene-disease
associations. The DisGeNET score can range from 0 to 1,
taking into account the number and type of sources (level of
curation, organisms), as well as the number of publications
supporting the association. The higher score represents
higher association (Piñero et al., 2016). Among the filtered
gene-disease pairs, the highest score was found between LPL
and Hyperlipoproteinemia Type I (1.000) and PPARG and
Familial Partial Lipodystrophy, Type 3 (0.940). For Obesity,
PPARG and LPL were found to have the highest association
score, 0.900 and 0.600, respectively (Tab. 6).

Discussion

Linkage between DEHP, DBP and BPA mixture and obesity
In this investigation, in silico approach was applied to
elucidate the linkage between the phthalates and BPA
mixture and obesity, as well as its comorbidities, and
highlight the potential genomic biomarkers. The present
study further illustrates the usefulness of computational
systems, easily applied as a tool, to help researchers in
choosing the most promising biomarkers and exploring
the mechanisms of toxicity which could further be
investigated by high through-put toxicological screening
tests. In this way, targeted research is more easily
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TABLE 2

Interactions between each of the investigated substances (DEHP, DBP and BPA) and 54 mutual genes connected with obesity
development (CTD Database (http://CTD.mdibl.org))

Substance DEHP DBP BPA

Interaction Protein
activity

mRNA
expression

Protein
expression

Binding Protein
activity

mRNA
expression

Protein
expression

Binding Protein
activity

mRNA
expression

Protein
expression

Binding

ACADM ↑ ↑ ↑↓

ACLY ↑ ↓ ↑↓ ↑

AHR ↑ ↑ + ↑ ↓ + ↑↓ ↑ ↑ +

AKT1 ↑ ↑ ↑ ↑ ↑↓ ↑↓

ALDH6A1 ↑ ↓ ↓

ANGPTL4 ↓ ↑↓ ↑↓

CEBPA ↑↓ ↑ ↑↓ ↑↓

CCL2 ↑ ↑ ↑↓ ↑↓

CD40 ↑ ↑ ↑

CNR1 ↓ ↑↓ ↑↓

CYCS ↑ ↑↓ ↑↓

CYP1B1 ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑↓ ↑

CYP2E1 ↓ ↓ ↑↓

DPYD ↓ ↑↓ ↓

ESR1 ↑↓ ↑ ↓ + ↑ ↑ ↑ + ↑↓ ↑↓ ↑ +

FASN ↑↓ ↑ ↑↓ ↑↓ ↑↓

FGF21 ↑ ↑ ↓ ↑↓

GAS7 ↑ ↓ ↑

GNAS ↑↓ ↓ ↑

GPX1 ↓ ↓ ↑ ↑ ↑↓ ↓ ↑↓

HADH ↑ ↑ ↓ ↑

HK2 ↑↓ ↑ ↑↓

HMOX1 ↑↓ ↑↓ ↓ ↑ ↑↓ ↑

HSD11B1 ↓ ↓ ↑ ↑↓ ↑↓ ↑

HSPA5 ↑↓ ↓ ↓ ↑↓ ↑↓

IGF2 ↓ ↑ ↑↓

IL6 ↑↓ ↑ ↑ ↑↓ ↑

KCNMA1 ↑↓ ↓ ↓

LDLR ↑↓ ↑↓ ↑↓

LPL ↑ ↑ ↑ ↑

ME1 ↑ ↑↓ ↑↓

MIR184 ↑ ↑ ↑↓

MMP9 ↑ ↑↓ ↑ ↑ ↑↓ ↑

NAMPT ↓ ↓ ↑↓

NPY1R ↓ ↑ ↓

NR0B2 ↑ ↑↓ ↑

NR1I2 ↑ ↑↓ + ↑ + ↑ ↑↓ ↑

NR1I3 ↑↓ ↑↓ + ↑ + ↑↓ ↓ +

NTRK2 ↓ ↓ ↑↓

NQO1 ↓ ↑ ↑ ↑ ↑

PARP1 ↑↓ ↑↓ ↓

PPARA ↑ ↓ ↑↓ + ↑ ↓ + ↑ ↑↓ ↑ +

PPARG ↑↓ ↑ ↑↓ + ↑ ↑ + ↑ ↑↓ ↑ +

PEX11A

(Continued)
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Table 2 (continued).

Substance DEHP DBP BPA

SAT1 ↑ ↑ ↑

SCD1 ↑ ↑ ↑↓ ↑

SERPINE1 ↑↓ ↑ ↑↓

SIRT1 ↓ ↓ ↓ ↑ ↑

SOD1 ↓ ↓ ↑ ↓ ↓ ↓ ↑↓ ↑

SOD2 ↓ ↓ ↓ ↓ ↑↓ ↑↓

SREBF1 ↑ ↓ ↑↓ ↑ ↑

STS ↑ ↓ ↑

TFRC ↓ ↓ ↑↓

TNF ↑↓ ↑ ↑ ↑ ↑↓ ↑↓

Note: ↑—increase; ↓—decrease; ↑↓—can both increase and decrease; DEHP- bis(2-ethylhexyl) phthalate; DBP—dibutyl phthalate; BPA—bisphenol A.

TABLE 3

31 DEHP/DBP/BPA-interacting genes/proteins with common interactions (CTD Database—http://CTD.mdibl.org)

Gene Interactions common to all three substances

ACADM Increased expression of ACADM mRNA*

AHR Increased activity of AHR protein*

AKT1 Increased activity of AKT1 protein

CEBPA Increased expression of CEBPA mRNA*

CCL2 Increased expression of CCL2 mRNA*

CD40 Increased expression of CD40 mRNA

CNR1 Decreased expression of CNR1 mRNA*

CYCS Increased expression of CYCS mRNA*

CYP1B1 Increased expression and increased activity of CYP1B1 protein

DPYD Decreased expression of DPYD mRNA*

ESR1 Bind to and result in increased activity of ESR1 protein* Increased expression of ESR1 mRNA*

FASN Increased/decreased expression of FASN mRNA*

HSD11B1 Decreased expression of HSD11B1 mRNA*

HSPA5 Decreased expression of HSPA5 protein*

IL6 Increased expression of IL6 protein

KCNMA1 Decreased expression of KCNMA1 mRNA*

LPL Increased expression of LPL mRNA

ME1 Increased expression of ME1 mRNA*

MMP9 Increased expression of MMP9 protein* Increased expression of MMP9 mRNA*

NR0B2 Increased expression of NR0B2 mRNA*

NR1I2 Increased activity of NR1I2 protein

NR1I3 Bind to NR1I3 Increased activity of NR1I3 protein*

PPARA Bind to PPARA protein Increased activity of PPARA protein Decreased expression of PPARA mRNA*

PPARG Bind to PPARG protein Increased activity and expression of PPARG protein*

SAT1 Increased expression of SAT1 mRNA

SCD1 Increased expression of SCD1 mRNA*

SERPINE1 Increased expression of SERPINE1 mRNA*

SOD1 Decreased expression of SOD1 mRNA*

SOD2 Decreased expression of SOD2 protein*

SREBF1 Increased expression of SREBF1 mRNA*

TNF Increased expression of TNF mRNA* Increased expression of TNF protein*
Note: Interactions’ marked with “*” mean that some of the three investigated substances interact with the gene in more than one way, while some of the
interactions were found to be opposite (increase vs. decrease of gene activation, e.g.), depending on various factors associated with chemical exposures, such as
dose, route, duration, metabolism, developmental stage of exposure, etc.
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achieved, which is accompanied by complying with the 3R
rule and animal welfare.

Numerous literature data have suggested that phthalates
and BPA have significant effects on the obesity development,
especially after the prenatal exposure at low doses. For
example, Hao et al. (2012) have demonstrated in a mouse
animal model that in utero exposure to a low dose
(0.05 mg/kg of b.w.) of DEHP metabolite, mono(2-ethylhexyl)
phthalate (MEHP), significantly increased body weight and fat
pad weight in male offspring at postnatal day 60 and elevated
serum cholesterol, glucose and triacylglyceride level (Hao
et al., 2012). Likewise, Somm et al. (2009) have confirmed the
body weight increase of both male and female offspring after
the exposure of pregnant females to 1 mg/L BPA in water
from the sixth day of gestation, until the end of lactation
(postnatal day 21). Our previous in vivo 28-days subacute
toxicity study in Wistar rats has demonstrated the ability
of the investigated mixture (50 mg/kg b.w./day DEHP +
50 mg/kg b.w/day DBP + 25 mg/kg b.w./day BPA) to increase
the serum glucose level and decrease serum testosterone level
even after the shorter exposure time (Baralić et al., 2020a;
Baralić et al., 2020b). Also, connection between the three
investigated substances (DEHP, DBP and BPA) and obesity
has been shown in human biomonitoring studies. In these
studies, positive association was found between the body mass
index and DEHP and DBP metabolites, as well as BPA
(Carwile and Michels, 2011; Harley et al., 2017; Meeker and
Ferguson, 2011), along with insulin resistance (Stahlhut et al.,
2007). Nonetheless, the possibility that the mixture of the two
phthalates and BPA might play a role in the obesity
development is still not studied enough. Moreover, it is
necessary to specify the particular molecular pathways and

explore the mechanisms by which these substances could
express their obesogenic properties.

In silico toxicogenomic data mining
After the comparison of our data sets for the three selected
substances (DEHP, DBP and BPA), it was concluded that 31
obesity-related genes/proteins had matching interactions for
all of them. More than half of these 31 genes/proteins
(56.49%) were in co-expression, which indicates a similarity
in their expression levels. Any of the aforementioned genes/
proteins could potentially be involved in the mechanism of
obesity development linked to the investigated mixture and,
therefore, could be used in further in vitro and in vivo
studies as genomic biomarkers.

In their data mining studies, Singh and Li (2012) have
demonstrated that phthalates and BPA exhibit similar
toxicogenomic, epigenetic and adverse effects on human
health, including obesity. They concluded that five of the
top ten toxicity networks of phthalates and BPA were
involved in inflammation, while the top four phthalate
molecular pathways were included in the regulation of lipid
metabolism and PPAR pathway (Singh and Li, 2013, 2012,
2011). They also marked 89 common interacting genes/
proteins for DEHP, DBP and BPA (Singh and Li, 2012).
However, as these data were collected in 2012, the number
of interacting genes for these three substances has
significantly increased. Similar observation can be made for
the results of Dong et al. (2018), who performed CTD
analyses of BPA and DBP as an additional investigation to
the in vivo experiment on zebrafish model. In their CTD
investigation, they found 4826 and 14737 interactions with
different genes/proteins for DBP and BPA, respectively,

FIGURE 2. Common gene-gene interactions of 31 investigated genes/proteins obtained by SetAnalyser tool. CTD integrates gene-gene and
protein-protein interactions from BioGRID (SetAnalyzer CTD tool—http://ctdbase.org/tools/analyzer.go).
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which is, compared to the number of interactions recorded in
our study (7140 for DBP and 54317 for BPA), considerably
less.

Molecular pathways and biological processes
Our further analysis has shown that response to lipid, lipid
metabolic process and its regulation, as well as steroid
metabolic process were among the top 10 listed biological
processes connected to the investigated mixture and obesity
development. This is in accordance with the recent in silico
study by Suvorov et al. (2021), who have also suggested that
the sensitivity of lipid metabolism pathways to chemical
exposures may be relevant to the current epidemic of
metabolic diseases, including obesity, Type 2 diabetes,
metabolic syndrome, and non-alcoholic fatty liver disease

(Suvorov et al., 2021). Another metabolic process
highlighted in the present study was inflammatory response,
which is thought to be the link between insulin resistance,
obesity and diabetes. It has been shown that increased
concentrations of proinflammatory cytokines, TNF-α and
IL-6, associated with obesity and type 2 diabetes, might lead
to the decrement of insulin signal transduction and interfere
with the anti-inflammatory effect of insulin, promoting
further inflammation (Dandona et al., 2004). IL-6 signaling
furthermore induces IL-10 expression and T cell
differentiation to IL-17-expressing T cells, disturbing the
definition of cell type specific contributions of inflammatory
mediators in not only obesity, but also its comorbidities
(Kern et al., 2019). Additionally, TNF-α is involved not only
in the inflammatory response, but also apoptosis of adipose

FIGURE 3. Tight network of 31 genes/proteins affected by the investigated substances (DEHP, DBP and BPA), along with 20 related genes/
proteins, and connected to the development of obesity (GeneMania predictive server—https://genemania.org); Co-expression (56.49% of
interactions)—purple lines: two genes are linked if their expression levels are similar across conditions in a gene expression study;
Predicted by the server (20.78% of interactions)—orange lines: predicted functional relationships between genes, often protein interactions.
A major source of predicted data is mapping known functional relationships from another organism via orthology. Two proteins are
predicted to interact if their orthologs are known to interact in another organism. Pathway (9.48% of interactions)—light blue lines: two
gene products are linked if they participate in the same reaction within a pathway; Physical interactions (6.29% of interactions)—pink
lines: two gene products are linked if they were found to interact in a protein-protein interaction study. Shared protein domains (3.49% of
interactions)—gray-yellow lines: protein domain data. Two gene products are linked if they have the same protein domain. Co-localization
(3.28% of interactions)—blue lines: genes expressed in the same tissue, or proteins found in the same location. Genetic Interactions (0.19%
of interactions)—green lines: two genes are functionally associated if the effects of perturbing one gene were found to be modified by
perturbations to a second gene.

526 KATARINA BARALIĆ et al.



TABLE 4

Top 10 biological processes, molecular functions and molecular pathways involved in the development of obesity and affected by the
investigated substances (DEHP, DBP, BPA), listed by the statistical significance (p < 0.05) (TopGenne’s ToppFun function—https://
toppgene.cchmc.org/enrichment.jsp)

Name ID p-value Genes/proteins

Biological
processes

Response to organic cyclic compound GO:0014070 3.813E-17 SREBF1, KCNMA1, AHR, CYP1B1, CCL2, DPYD,
AKT1, TNF, NR1I2, PPARA, CEBPA, PPARG, HSPA5,
NR0B2, IL6, NR1I3, ESR1, CNR1, SOD1

Response to oxygen-containing
compound

GO:1901700 2.386E-15 SREBF1, KCNMA1, AHR, CYP1B1, CCL2, AKT1, TNF,
PPARA, PPARG, MMP9, ME1, HSPA5, NR0B2, SCD,
IL6, ESR1, CNR1, LPL, SOD1, SOD2, SERPINE1

Response to lipid GO:0033993 8.096E-15 SREBF1, KCNMA1, AHR, CCL2, AKT1, TNF, NR1I2,
PPARA, PPARG, NR0B2, SCD, IL6, NR1I3, ESR1,
CNR1, LPL, SERPINE1

Lipid metabolic process GO:0006629 1.371E-14 SREBF1, KCNMA1, CYP1B1, AKT1, FASN, TNF,
NR1I2, PPARA, CEBPA, HSD11B1, PPARG, ACADM,
ME1, NR0B2, SCD, ESR1, CNR1, LPL, SOD1

Regulation of lipid metabolic process GO:0019216 4.913E-14 SREBF1, KCNMA1, AKT1, FASN, TNF, PPARA,
PPARG, ACADM, ME1, SCD, ESR1, CNR1, SOD1

Steroid metabolic process GO:0008202 1.117E-13 SREBF1, KCNMA1, AHR, CYP1B1, DPYD, TNF,
NR1I2, PPARA, PPARG, MMP9, HSPA5, IL6, CNR1,
LPL, SOD1, SOD2, SERPINE1

Response to drug GO:0042493 1.475E-13 SREBF1, KCNMA1, AHR, CYP1B1, DPYD, TNF,
NR1I2, PPARA, PPARG, MMP9, HSPA5, IL6, CNR1,
LPL, SOD1, SOD2, SERPINE1

Cellular response to lipid GO:0071396 2.001E-13 SREBF1, KCNMA1, AHR, CYP1B1, DPYD, TNF,
NR1I2, PPARA, PPARG, MMP9, HSPA5, IL6, CNR1,
LPL, SOD1, SOD2, SERPINE1

Cellular response to organic cyclic
compound

GO:0071407 2.266E-13 AHR, CYP1B1, CCL2, AKT1, TNF, NR1I2, PPARA,
CEBPA, PPARG, HSPA5, NR0B2, NR1I3, ESR1, SOD1

Inflammatory response GO:0006954 3.331E-12 CCL2, AKT1, TNF, PPARA, CEBPA, PPARG, MMP9,
IL6, ESR1, CNR1, LPL, SOD1, CD40, SERPINE1

Molecular
functions

Nuclear receptor activity GO:0004879 1.496E-12 SREBF1, AHR, NR1I2, PPARA, PPARG, NR1I3, ESR1

Ligand-activated transcription factor
activity

GO:0098531 1.496E-12 SREBF1, AHR, NR1I2, PPARA, PPARG, NR1I3, ESR1

Oxidoreductase activity GO:0016491 5.257E-12 CYP1B1, DPYD, AKT1, FASN, TNF, PPARA,
HSD11B1, ACADM, ME1, SCD, ESR1, CNR1, SOD1,
SOD2, CYCS

Steroid hormone receptor activity GO:0003707 3.204E-10 NR1I2, PPARA, PPARG, NR0B2, NR1I3, ESR1

Identical protein binding GO:0042802 1.117E-9 KCNMA1, AHR, DPYD, AKT1, FASN, TNF, CEBPA,
PPARG, MMP9, SAT1, ACADM, HSPA5, NR0B2,
ESR1, LPL, SOD1, SOD2

Transition metal ion binding GO:0046914 7.500E-8 CYP1B1, DPYD, NR1I2, PPARA, PPARG, MMP9,
ME1, SCD, NR1I3, ESR1, SOD1, SOD2

Protein dimerization activity GO:0046983 3.116E-7 SREBF1, KCNMA1, AHR, DPYD, AKT1, FASN,
PPARA, CEBPA, PPARG, HSPA5, NR0B2, LPL, SOD1

Superoxide dismutase activity GO:0004784 6.187E-7 TNF, SOD1, SOD2

Oxidoreductase activity, acting on
Superoxide radicals as acceptor

GO:0016721 6.187E-7 TNF, SOD1, SOD2

Oxidoreductase activity, acting on paired
Donors, with incorporation or reduction
of molecular oxygen

GO:0016705 1.564E-6 CYP1B1, AKT1, TNF, SCD, ESR1, CNR1

(Continued)
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tissues and lipid metabolism, by intensifying lipogenesis,
insulin signalling and reactive oxygen species (ROS) synthesis.
Newly synthesized ROS further induce the production of other

inflammatory cytokines and pro-inflammatory transcription
factors (e.g., activator protein-1 (AP-1) and nuclear
factor kapa B (NF-kB)) which intensify further ROS

Table 4 (continued).

Name ID p-value Genes/proteins

Molecular
pathways

Visceral Fat Deposits and the Metabolic
Syndrome

M22017 2.144E-9 TNF, HSD11B1, PPARG, LPL

Nuclear Receptor transcription pathway 1269652 2.307E-9 NR1I2, PPARA, PPARG, NR0B2, NR1I3, ESR1

PPAR signaling pathway M13088 1.489E-8 PPARA, PPARG, ACADM, ME1, SCD, LPL

Nuclear Receptors in Lipid Metabolism
and Toxicity

M16393 1.762E-8 NR1I2, PPARA, PPARG, NR0B2, NR1I3

Non-alcoholic fatty liver disease
(NAFLD)

862188 6.106E-8 SREBF1, AKT1, TNF, PPARA, CEBPA, IL6, CYCS

Transcriptional regulation of white
adipocyte differentiation

1270345 6.515E-8 SREBF1, TNF, PPARA, CEBPA, PPARG, LPL

Fatty acid, triacylglycerol, and ketone
body metabolism

1270010 1.321E-7 SREBF1, AHR, FASN, PPARA, PPARG, ACADM, ME1,
SCD

Mechanism of Gene Regulation by
Peroxisome Proliferators via PPARa
(alpha)

M2404 1.595E-7 TNF, PPARA, ME1, NR0B2, LPL

Low-density lipoprotein (LDL) pathway
during atherogenesis

M22051 2.741E-7 CCL2, IL6, LPL

RXR and RAR heterodimerization with
other nuclear receptor

M162 4.438E-7 SREBF1, TNF, PPARA, PPARG

TABLE 5

Top 10 comorbidities of obesity in which 31 genes/proteins common to all three substances (DEHP, DBP, BPA) are involved, defined and
sorted by p-value (TopGenne’s ToppFun function—https://toppgene.cchmc.org/enrichment.jsp)

Disease p-value Genes/proteins

Metabolic Syndrome X 1.114E-28 SREBF1, AHR, CCL2, AKT1, TNF, NR1I2, PPARA, CEBPA, HSD11B1, PPARG, MMP9, SAT1,
HSPA5, NR0B2, SCD1, IL6, NR1I3, ESR1, CNR1, LPL, SOD2, CD40, SERPINE1

Steatohepatitis 2.083E-28 SREBF1, AHR, CYP1B1, CCL2, DPYD, AKT1, FASN, TNF, NR1I2, PPARA, CEBPA, PPARG,
MMP9, HSPA5, NR0B2, SCD1, IL6, CNR1, LPL, SOD1, SOD2, CYCS, SERPINE1

Fatty Liver 4.781E-27 SREBF1, AHR, CYP1B1, CCL2, FASN, TNF, NR1I2, PPARA, CEBPA, HSD11B1, PPARG,
MMP9, HSPA5, NR0B2, SCD1, IL6, LPL, SOD1, SOD2, CYCS, SERPINE1

Diabetes Mellitus, Non-
Insulin-Dependent

6.425E-23 SREBF1, AHR, CZP1B1, CCL2, AKT1, FASN, TNF, NR1I2, PPARA, CEBPA, HSD11B1,
PPARG, MMP9, SAT1, ME1, HSPA5, NR0B2, SCD1, IL6, NR1I3, ESR1, CNR1, LPL, SOD2,
SERPINE1

Diabetes Mellitus 6.160E-20 SREBF1, KCNMA1, CCL2, AKT1, FASN, TNF, NR1I2, PPARA, CEBPA, HSD11B1, PPARG,
MMP9, HSPA5, NR0B2, SCD1, IL6, NR1I3, ESR1, CNR1, LPL, SOD1, SOD2, CD40, SERPINE1

Non-alcoholic Fatty Liver
Disease

1.110E-19 SREBF1, CCL2, AKT1, FASN, TNF, NR1I2, PPARA, CEBPA, HSD11B1, PPARG, HSPA5,
NR0B2, IL6, LPL, SOD2, SERPINE1

Liver neoplasms 1.849E-19 SREBF1, AHR, CYP1B1, CCL2, DPYD, AKT1, FASN, TNF, NR1I2, PPARA, CEBPA, PPARG,
MMP9, SAT1, HSPA5, NR0B2, SCD1, IL6, NR1I3, ESR1, LPL, SOD1, SERPINE1

Coronary Artery Disease 2.705E-19 SREBF1, KCNMA1, CCL2, AKT1, TNF, NR1I2, PPARA, HSD11B1, PPARG, MMP9, HSPA5,
SCD1, IL6, ESR1, CNR1, LPL, SOD1, SOD2, CD40, SERPINE1

Cardiovascular Diseases 2.257E-18 CYP1B1, CCL2, TNF, NR1I2, PPARA, CEBPA, HSD11B1, PPARG, MMP9, NR0B2, SCD, IL6,
ESR1, CNR1, LPL, SOD2, CD40, SERPINE1

Coronary Arteriosclerosis 3.199E-18 SREBF1, CCL2, AKT1, TNF, NR1I2, PPARA, HSD11B1, PPARG, MMP9, HSPA5, SCD, IL6,
ESR, CNR1, LPL, SOD1, SOD2, CD40, SERPINE1

Genes/proteins involved in all comorbidities: CCL2, IL6, LPL, PPARA, PPARG, SERPINE1, TNF
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production and might be regarded as circulus vitiosus (Wang
and Trayhurn, 2006; Čolak and Pap, 2021). Fittingly, oxidative
stress was also highlighted as one of the important obesity-
linked molecular mechanisms extracted in our study, while
superoxide dismutase activity oxidoreductase activity (acting
on superoxide radicals as acceptor, as well as acting on paired
donors, with incorporation or reduction of molecular oxygen)
was present among the top molecular functions. Oxidative
stress is known to stimulate adipose tissue deposition,
including preadipocyte proliferation, adipocyte differentiation
and growth (Čolak and Pap, 2021). Furukawa et al. (2004)
have stated that oxidative stress in accumulated fat can be
regarded as a significant mechanism of metabolic syndrome
linked to obesity, and even concluded that redox status in
adipose tissue could be used as therapeutic target (Furukawa et
al., 2004). Furthermore, our analysis has singled out nuclear
and steroid hormone receptor activity among the top
molecular functions. This is expected, since all three
substances were shown to bind to ESR1 receptor and increase
the expression of ESR1 gene mRNA, which was also
demonstrated in our study. For example, prenatal BPA
exposure was found to provoke obesity development via ERs,

while changes in maternal estrogen levels during gestation
elevated the number of adipocytes number and weakened their
function (Stojanoska et al., 2017). However, it is important to
bear in mind that the role of sex steroids in white adipose
tissue function is complex, while both concentrations of
androgens and estrogens appear to affect the modulation of
white adipose tissue function (Newell-Fugate, 2017). On the
other hand, molecular pathway analysis has shown that
visceral fat deposits and metabolic syndrome, nuclear receptor
transcription pathway and PPAR signaling pathway could be
highlighted as the top 3 molecular pathways connected to both
obesity development and exposure to the investigated mixture.

Choosing the obesity/comorbidities-related genomic biomarkers
Considering that the most metabolic diseases are intertwined,
our further investigation listed 10 comorbidities of obesity in
which the common 31 genes/proteins were involved, showing
that 7 genes/proteins (CCL2, IL6, LPL, PPARA, PPARG,
SERPINE1, TNF) were present in the etiology of all these
comorbidities.

Our data mining approach has revealed that all three
investigated substances interacted with PPARA and PPARG

TABLE 6

Top 10 gene-disease pairs for the selected 7 genes—CCL2, IL6, LPL, PPARA, PPARG, SERPINE1, TNF (DisGeNET database—http://
www.disgenet.org)

Gene Disease Disease class Gene-disease
association score

LPL Hyperlipoproteinemia Type I Congenital, Hereditary, and Neonatal Diseases and Abnormalities;
Nutritional and Metabolic Diseases

1.000

PPARG Familial Partial
Lipodystrophy, Type 3

Nutritional and Metabolic Diseases; Skin and Connective Tissue
Diseases

0.940

PPARG Obesity Nutritional and Metabolic Diseases; Pathological Conditions, Signs and
Symptoms

0.900

TNF Rheumatoid Arthritis Immune System Diseases; Musculoskeletal Diseases; Skin and
Connective Tissue Diseases

0.700

PPARG Hypertensive disease Cardiovascular Diseases 0.700

TNF Inflammatory Bowel Diseases Digestive System Diseases 0.600

TNF Diabetes Mellitus, Non-
Insulin-Dependent

Endocrine System Diseases; Nutritional and Metabolic Diseases 0.600

LPL Obesity Nutritional and Metabolic Diseases; Pathological Conditions, Signs and
Symptoms

0.600

PPARG Malignant tumor of colon Digestive System Diseases; Neoplasms 0.600

TNF Congestive heart failure Cardiovascular Diseases 0.600

TNF Congestive heart failure Cardiovascular Diseases 0.600

TNF Heart failure Cardiovascular Diseases 0.600

SERPINE1 Hypertensive disease Cardiovascular Diseases 0.600

TNF Hypertensive disease Cardiovascular Diseases 0.600

TNF Myocardial Infarction Cardiovascular Diseases 0.600

CCL2 Kidney Failure, Chronic Female Urogenital Diseases and Pregnancy Complications; Male
Urogenital Diseases

0.600

PPARG Familial partial
lipodystrophy

Nutritional and Metabolic Diseases; Skin and Connective Tissue
Diseases

0.600

LPL Hypercholesterolemia,
Familial

Congenital, Hereditary, and Neonatal Diseases and Abnormalities;
Nutritional and Metabolic Diseases

0.600
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(genes which encode PPARα and PPARγ) in the same
manner, while PPAR signaling pathway was among the top
3 molecular pathways connected to the obesity development
and exposure to the investigated substances. In the
DisGeNET database, PPARG was among the highest gene-
disease associations, with a score 0.900 for obesity. While
PPARα regulates fatty acid oxidation in several tissues
known for their high rates of fatty acid oxidation such as
liver, heart, kidney, and brown adipose tissue, PPARγ is
responsible for fatty acid uptake and storage by stimulating
triglyceride accumulation in adipocytes, NADPH synthesis
for lipogenesis, glyceroneogenesis, as well as fatty acid
esterification (Kunej et al., 2013; Plutzky, 2011; Singh and
Li, 2011). However, PPARα activators exert a variety of
metabolic actions, depending on to the species, gender, dose,
and timing of exposure. For example, high doses DEHP (100
or 1,000 mg/kg/day) applied in the duration of 13 weeks
protected adult mice from diet-induced obesity by promoting
fatty acid oxidation and catabolic metabolism by activating
PPARα (Feige et al., 2010). On the contrary, in mice
expressing human PPARα, perinatal exposure to MEHP in
low doses (0.5, 0.25 or 0.05 mg/kg of b.w.) promoted fat
accumulation and exacerbated obesity (Hao et al., 2012).
Furthermore, other important factors should be considered,
such as difference between animals and humans. PPARγ,
crucial for white adipose tissue development and adipogenesis,
is much more highly expressed in human tissues than PPARα.
Also, because of the amino acid sequence within the ligand
binding domain, sensitivity of human PPARα activation is
lower compared to the rodents’ PPARα (Hurst and Waxman,
2003). Hertz and Bar-Tana (1998) have demonstrated that,
unlike in rodents, hypolipidemic effect exerted by peroxisome
proliferators in humans is not accompanied by peroxisome
proliferation, nor by induction of peroxisomal β-oxidation.
They concluded that biological effects exerted by peroxisome
proliferators in the human liver are likely to be mediated by a
transduction pathway independent of PPARα (Hertz and Bar-
Tana, 1998). Thus, taking into account its lower relevance in
humans compared to rodents, we have decided to exclude
PPARA from our further search for potential biomarkers.

The second gene with the matching interactions for DEHP,
DBP and BPA in our study was SERPINE1. This gene encodes
plasminogen activator inhibitor-1 (PAI-1), a member of the
serine protease inhibitor superfamily. SERPINE1 can be
associated with the increased risk for type 2 diabetes and its
complications, such as diabetic retinopathy and diabetic
coronary artery disease, etc. (Fan et al., 2018). Additionally,
Kaur et al. (2010) have suggested that this gene presents a link
between obesity and diabetes.

Another gene among the identified potential biomarkers in
our study was CCL2. This chemokines gene plays a role in
chronic inflammation and, similarly to SERPINE1, compounds
the problem of insulin resistance and obesity. CCL2 mRNA
was found to be higher expressed in adipocytes of obese
individuals (Rakotoarivelo et al., 2020). Both CCL2 and
SERPINE1 were among the top 20 genes with the highest
numbers of activating and suppressive interactions in the CTD,
extracted by the data mining study by Suvorov et al. (2021).

Investigated phthalates and BPA have been found to
interact with additional two proinflammatory markers, IL6

and TNF, in the same manner. As mentioned before, these
genes are closely linked with chronic low-grade inflammation,
so-called meta-inflammation, which occurs in obesity
(Sindhu et al., 2015).

Limitations of in silico data mining
Our research has proven the usefulness of freely available web-
based analysis tools for toxicogenomic data mining research.
However, CTD, ToppGene Suite, DisGeNET or any other
functional annotation-based prioritization method has some
limitations which confirm that in silico toxicogenomic
investigations could serve only as a support to other toxicity
testing methods in the overall toxicity testing process. The
analysis is heavily dependent on the underlying online
sources from which the annotations are retrieved. It also
relies upon the quality of interaction data, having in mind
all the missing interactions and possible false positive results
(Chen et al., 2009). Moreover, the obtained results
demonstrate statistical associations between genes impacted
by chemicals and those involved in environmental diseases,
without the ability to address the dose-response relationship
(Harris et al., 2020). It should also be acknowledged that
exposure to chemicals is complex and, not only dose, but
many other things should be considered, such as route,
duration, metabolism, and developmental stage of exposure,
as well as all the environmental factors (Davis et al., 2008).
As a result of this, many interactions obtained from the
CTD could be opposite depending on the type and
conditions of the study it was curated from. As shown in
Tab. 3, although there were 31 genes/proteins these
substances affected in the same manner, some of the
interactions were double-natured, showing both activation
and inhibition of the interacting gene/protein. Dual-natured
interactions could be explained by the unconventional dose-
response relationships, the so-called non-monotonic dose-
response (NMDR), frequently linked to endocrine disruptive
chemicals such as phthalates and BPA. It is characterized by
a dose-response curve which slope changes direction within
the range of tested doses (Lagarde et al., 2015). In the
context of our in silico investigation, this implies that the
investigated substances could both increase and decrease the
activity of certain genes, depending on the experimental
design and applied doses.

All things considered, since various environmental factors
might play an important role in the manifestation of
environmental diseases, results obtained by in silico data
mining represent an insight into further laboratory
investigations by which chemical influence on identified gene
sets could further be explored by changing external conditions
(e.g., high-fat or regular diet, route of exposure, etc.) in order
to test all the other impacts on the selected gene set.

Conclusion

The results of in silico study have indicated the presence of 31
obesity-related genes/proteins with matching interactions for
DEHP, DBP and BPA, implying that these three substances
might act in an additive manner on the development of this
disorder. Seven obesity/comorbidities-related genes/proteins
(6 of them relevant to humans—CCL2, IL6, LPL, PPARG,
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SERPINE1, TNF) were selected as potential set of genomic
biomarkers for mixture (phthalates and BPA) assessment.
Among these, PPARG and LPL were marked as the two
genes/proteins most closely linked to obesity. Identification
of genomic biomarkers is important for exploring various
factors which might influence the development and
progression of obesity, among which is exposure to various
chemicals. Moreover, identified genes provide the possibility
to be used as targets for further translational therapies. Our
results have demonstrated that publicly available databases
(such as the CTD, ToppGene Suite, DisGeNET and
GeneMania) can be used to screen a large number of
chemicals and genes/proteins for various effects on
molecular responses related to environmental diseases.
Furthermore, the analysis reported here should be applicable
to almost any mixture of environmental chemicals and any
disease present in the CTD in order to explore molecular
mechanisms which could further be confirmed by additional
toxicity assessment.
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