FarFaR - Pharmacy Repository
University of Belgrade, Faculty of Pharmacy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
  •   FarFaR
  • Pharmacy
  • Radovi istraživača / Researchers’ publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method

Authorized Users Only
2016
Authors
Terzić, Jelena
Popović, Igor
Stajić, Ana
Tumpa, Anja
Jančić-Stojanović, Biljana
Article (Published version)
Metadata
Show full item record
Abstract
This paper deals with the development of hydrophilic interaction liquid chromatographic (HILIC) method for the analysis of bilastine and its degradation impurities following Analytical Quality by Design approach. It is the first time that the method for bilastine and its impurities is proposed. The main objective was to identify the conditions where an adequate separation in minimal analysis duration could be achieved within a robust region. Critical process parameters which have the most influence on method performance were defined as acetonitrile content in the mobile phase, pH of the aqueous phase and ammonium acetate concentration in the aqueous phase. Box-Behnken design was applied for establishing a relationship between critical process parameters and critical quality attributes. The defined mathematical models and Monte Carlo simulations were used to identify the design space. Fractional factorial design was applied for experimental robustness testing and the method is validated... to verify the adequacy of selected optimal conditions: the analytical column Luna (R) HILIC (100 mm x 4.6 mm, 5 mu m particle size); mobile phase consisted of acetonitrile aqueous phase (50 mM ammonium acetate, pH adjusted to 5.3 with glacial acetic acid) (90.5:9.5, v/v); column temperature 30 degrees C, mobile phase flow rate 1 mL min(-1), wavelength of detection 275 nm.

Source:
Journal of Pharmaceutical and Biomedical Analysis, 2016, 125, 385-393
Publisher:
  • Elsevier Science BV, Amsterdam
Funding / projects:
  • Modelling of different chromatographic systems with chemometrical approach in pharmaceutical analysis (RS-172052)

DOI: 10.1016/j.jpba.2016.04.022

ISSN: 0731-7085

PubMed: 27131148

WoS: 000376474400046

Scopus: 2-s2.0-84964462209
[ Google Scholar ]
36
31
URI
https://farfar.pharmacy.bg.ac.rs/handle/123456789/2548
Collections
  • Radovi istraživača / Researchers’ publications
Institution/Community
Pharmacy
TY  - JOUR
AU  - Terzić, Jelena
AU  - Popović, Igor
AU  - Stajić, Ana
AU  - Tumpa, Anja
AU  - Jančić-Stojanović, Biljana
PY  - 2016
UR  - https://farfar.pharmacy.bg.ac.rs/handle/123456789/2548
AB  - This paper deals with the development of hydrophilic interaction liquid chromatographic (HILIC) method for the analysis of bilastine and its degradation impurities following Analytical Quality by Design approach. It is the first time that the method for bilastine and its impurities is proposed. The main objective was to identify the conditions where an adequate separation in minimal analysis duration could be achieved within a robust region. Critical process parameters which have the most influence on method performance were defined as acetonitrile content in the mobile phase, pH of the aqueous phase and ammonium acetate concentration in the aqueous phase. Box-Behnken design was applied for establishing a relationship between critical process parameters and critical quality attributes. The defined mathematical models and Monte Carlo simulations were used to identify the design space. Fractional factorial design was applied for experimental robustness testing and the method is validated to verify the adequacy of selected optimal conditions: the analytical column Luna (R) HILIC (100 mm x 4.6 mm, 5 mu m particle size); mobile phase consisted of acetonitrile aqueous phase (50 mM ammonium acetate, pH adjusted to 5.3 with glacial acetic acid) (90.5:9.5, v/v); column temperature 30 degrees C, mobile phase flow rate 1 mL min(-1), wavelength of detection 275 nm.
PB  - Elsevier Science BV, Amsterdam
T2  - Journal of Pharmaceutical and Biomedical Analysis
T1  - Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method
VL  - 125
SP  - 385
EP  - 393
DO  - 10.1016/j.jpba.2016.04.022
ER  - 
@article{
author = "Terzić, Jelena and Popović, Igor and Stajić, Ana and Tumpa, Anja and Jančić-Stojanović, Biljana",
year = "2016",
abstract = "This paper deals with the development of hydrophilic interaction liquid chromatographic (HILIC) method for the analysis of bilastine and its degradation impurities following Analytical Quality by Design approach. It is the first time that the method for bilastine and its impurities is proposed. The main objective was to identify the conditions where an adequate separation in minimal analysis duration could be achieved within a robust region. Critical process parameters which have the most influence on method performance were defined as acetonitrile content in the mobile phase, pH of the aqueous phase and ammonium acetate concentration in the aqueous phase. Box-Behnken design was applied for establishing a relationship between critical process parameters and critical quality attributes. The defined mathematical models and Monte Carlo simulations were used to identify the design space. Fractional factorial design was applied for experimental robustness testing and the method is validated to verify the adequacy of selected optimal conditions: the analytical column Luna (R) HILIC (100 mm x 4.6 mm, 5 mu m particle size); mobile phase consisted of acetonitrile aqueous phase (50 mM ammonium acetate, pH adjusted to 5.3 with glacial acetic acid) (90.5:9.5, v/v); column temperature 30 degrees C, mobile phase flow rate 1 mL min(-1), wavelength of detection 275 nm.",
publisher = "Elsevier Science BV, Amsterdam",
journal = "Journal of Pharmaceutical and Biomedical Analysis",
title = "Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method",
volume = "125",
pages = "385-393",
doi = "10.1016/j.jpba.2016.04.022"
}
Terzić, J., Popović, I., Stajić, A., Tumpa, A.,& Jančić-Stojanović, B.. (2016). Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method. in Journal of Pharmaceutical and Biomedical Analysis
Elsevier Science BV, Amsterdam., 125, 385-393.
https://doi.org/10.1016/j.jpba.2016.04.022
Terzić J, Popović I, Stajić A, Tumpa A, Jančić-Stojanović B. Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method. in Journal of Pharmaceutical and Biomedical Analysis. 2016;125:385-393.
doi:10.1016/j.jpba.2016.04.022 .
Terzić, Jelena, Popović, Igor, Stajić, Ana, Tumpa, Anja, Jančić-Stojanović, Biljana, "Application of Analytical Quality by Design concept for bilastine and its degradation impurities determination by hydrophilic interaction liquid chromatographic method" in Journal of Pharmaceutical and Biomedical Analysis, 125 (2016):385-393,
https://doi.org/10.1016/j.jpba.2016.04.022 . .

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB
 

 

All of DSpaceCommunitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About FarFaR - Pharmacy Repository | Send Feedback

OpenAIRERCUB